Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T06:33:39.198Z Has data issue: false hasContentIssue false

Thermal Interdiffusion in InGaAs/GaAs Strained Multiple Quantum Well Infrared Photodetector

Published online by Cambridge University Press:  10 February 2011

Alex S. W. Lee
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
E. Herbert Li
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
Gamani Karunasiri
Affiliation:
Department of Electrical Engineering, National University of Singapore, Singapore 119260.
Get access

Abstract

RTA at 850 °C for 5 and 10 s is carried out to study the effect of interdiffusion on the optical and electrical properties of strained InGaAs/GaAs quantum well infrared photodetector. Photoluminescence measurement at 4.5 K shows that no strain relaxation or misfit dislocation formation occurs throughout the annealing process. Absorption and responsivity peak wavelengths are red shifted continuously without appreciable degradation in absorption strength. The normal incident absorption, which is believed to be the result of band-mixing effects induced by the coupling between the conduction and valence and is usually forbidden in conventional polarization selection rule, is preserved after interdiffusion. Responsivity spectra of both 0° and 90° polarization are of compatible amplitude and the shape of the annealed spectra becomes narrower. Dark current of the annealed devices is not very sensitive to temperature variation and is found to be an order of magnitude larger than the as-grown one at 77K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levine, B. F., Zussman, A., Gunapala, S. D., Asom, M. T., Kuo, J. M., and Hobson, W. S., J. Appl. Phys. Lett. 72, 4429 (1992)Google Scholar
2. West, L. C., English, S. J., Appl. Phys. Lett. 46, 1156 (1985).Google Scholar
3. Karunasiri, R. P. G., Park, J. S., Chen, J., and Shih, R., Appl. Phys. Lett. 67, 2600 (1995).Google Scholar
4. Matthews, J. W. and Blakeskee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
5. Bürkner, S., Ralston, J. D., Weisser, S., Rosenzweig, J., Larkins, E. C., Sah, R. E., and Fleißner, J., IEEE Photon. Technol. Lett. 7, 941 (1995).Google Scholar
6. Ralston, J. D., Ramsteiner, M., Discher, B., Maier, M., Brandt, G., Koidl, P., and As, D. J., J. Appl. Phys. 70, 2195 (1991).Google Scholar
7. Steele, A. G., Buchanan, M., Liu, H. C., and Wasilewski., Z. R., J. Appl. Phys. 75, 8234 (1994).Google Scholar
8. Elman, B., Koteles, E. S., Melman, P., Jagannath, C., Armiento, C. A., and Rothman, M., J. Appl. Phys. 68, 1351 (1990).Google Scholar
9. Burker, S., Baeumler, M., Wanger, J., Larkins, E. C., Rothemund, W., and Ralston, J. D., J. Appl. Phys. 79, 6818 (1996).Google Scholar
10. Deppe, D. G. and Holonyak, N., Jr., “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64, R93 (1988).Google Scholar
11. Bandara, K. M. S. V., Levine, B. F., and Asom, M. T., J. Appl. Phys. 74, 346 (1993).Google Scholar
12. Choi, K. K, Taysing-Lara, M., Newman, P. G., and Chang, W., “Wavelength tuning and absorption line shape of quantum well infrared photodetectors.Appl. Phys. Lett. 61, 1781 (1992).Google Scholar
13. Peng, L. H. and Fonstad, C. G., “Multiple coupling effects on electron quantum well intersubband Transitions,” J. Appl. Phys. 77, 747 (1995).Google Scholar
14. Lee, A. S. W. and Li, E. H., “Effects of interdiffusion of quantum well infrared photodetector,” Appl. Phys. Lett. 69, 3581 (1996).Google Scholar
15. Liu, H. C., Wasilewski, Z.R., Buchanan, M., and Chu, Hanyou, Appl. Phys. Lett. 63, 761 (1993).Google Scholar