Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T11:23:47.792Z Has data issue: false hasContentIssue false

Thermal Drag of the Antiphase Domain Boundary Motion

Published online by Cambridge University Press:  10 February 2011

A. Umantsev*
Affiliation:
Department of Natural Sciences, Saint-Xavier University, Chicago, IL 60655umantsev@mercy.sxu.edu
Get access

Abstract

Antiphase domain boundary is a region in materials where ordering of atoms changes from one structural variant to another. Influence of the internal energy excess on the dynamics of such boundary is considered in the framework of the Onsager theory of linear response. The internal energy transport entails a temperature hump in the transition region and causes a drag effect. An evolution equation that takes into account the finite thermal conductivity is derived. Experimental setup to reveal the thermal drag is suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lifshitz, I.M., Soy. Phys. JETP 15 (5) 939 (1962).Google Scholar
2. Shockley, W., J. of Chem. Phys. 6, 130 (1938).Google Scholar
3. English, A.T., Trans AIME 236, 14 (1966).Google Scholar
4. Cahn, J.W. and Allen, S. M., J. de Physique, Colloque C–7, 54 (1977); Acta Metall, 27, 1085 (1979).Google Scholar
5. Cahn, J.W., Acta Metall, 10, 789 (1962); M. Hillert and B. Sundman, ibid, 24, 731 (1976); J.E. Krzanowski and S.M. Allen, ibid, 34, 1035, 1045 (1979); V. Yu. Dobretsov et al., Europhys. Lett. 31, 417 (1995).Google Scholar
6. Callen, H.B., Thermodynamics and Introduction to Thermostatics. (John Wiley&Sons, NewYork, 1985)Google Scholar
7. Gibbs, J. W. The Scientific papers. (Dover, NY, 1961), Vol.1 Google Scholar
8. Umantsev, A., J. Chem. Phys. 96, 605 (1992).Google Scholar
9. Landau, L.D. and Lifshitz, E.M., Hydrodynamics (Pergamon Press, Oxford, 1958)Google Scholar
10. Landau, L.D. and Lifshitz, E.M., Statistical Physics (Pergamon Press, Oxford, 1958)Google Scholar
11. Cahn, J.W. and Hilliard, J. E., J. of Chem. Phys. 28, 258 (1958).Google Scholar
12. Mullins, W.W. and Vinals, J., ActaMetall, 37, 991 (1989).Google Scholar
13. Hohenberg, P.C. and Halperin, B.I., Rev. Mod Phys. 49, 435, (1977).Google Scholar
14. Bar'yakhtar, V.G. et al, Sol. State Comm. 72,1117 (1989); Sov. Solid State 32, 502 (1990)Google Scholar