Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T13:26:35.507Z Has data issue: false hasContentIssue false

Thermal Annealing of Shallow Implanted Phosphorus in Si(100)

Published online by Cambridge University Press:  28 February 2011

Ning Yu
Affiliation:
Texas Center for Superconductivity, Department of Physics, University of Houston, Houston, TX 77004
K. B. Ma
Affiliation:
Texas Center for Superconductivity, Department of Physics, University of Houston, Houston, TX 77004
Z. H. Zhang
Affiliation:
Texas Center for Superconductivity, Department of Physics, University of Houston, Houston, TX 77004
W. K. Chu
Affiliation:
Texas Center for Superconductivity, Department of Physics, University of Houston, Houston, TX 77004
C. Kirschbaum
Affiliation:
Charles Evans and Associates, Redwood City, CA 94063
K. Varahramyan
Affiliation:
IBM Corporation, Essex Junction, VT 05452
Get access

Abstract

The effect of channeling on the diffusion of ion implanted phosphorus in silicon has been investigated. Silicon samples, implanted with 25–100 keV P along the [100] channeling and the random equivalent directions, were subjected to thermal annealing over a temperature range of 600–1050 °C. Secondary Ion Mass Spectrometry (SIMS) and Spreading Resistance Probe (SRP) have been used to determine the atomic and carrier concentration depth profiles, respectively. The findings show that after annealing, the P profiles by implantation along the random equivalent direction can be kept shallower than the profiles obtained by implantation along the [100] channeling direction. Through proper annealing and electrical activation, only minimal diffusion in the tail region of the profiles occurred. For 50 keV P at 1×1015 at./cm2, changing the implantation from the [100] to the random equivalent direction leads to a reduction in the profile depth of about 50% (at 1×1017at./cm3). After 10 seconds of rapid thermal annealing (RTA) at 1050 °C, the profile depth remains more than 30% shallower than the channeled profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozturk, M. C., Wortman, J. J., Osburn, C. M., Ajmera, A., Rozgonyi, G. A, Frey, E., Chu, W.K., and Lee, C., IEEE Transactions on Electron Devices 35, 659 (1988).CrossRefGoogle Scholar
2. Ozturk, M. C., and Wortman, J. J., Appl. Phys. Lett. 53, 281 (1988).Google Scholar
3. 'Ajmera, A. C., Rozgonyi, G. A., and Fair, R. B., Appl. Phys. Lett. 53, 813 (1988).CrossRefGoogle Scholar
4. Cho, K., Allen, W. R., Finstad, T. G., Chu, W. K., Liu, J., and Wortman, J. J., Nucl. Instru. & Meth. B7/8, 265 (1985).CrossRefGoogle Scholar
5. Hodgson, R. T., Deline, V., Mader, S. M., Morehead, F. F., Gelpey, J. C., Mater. Res. Soc. Symp. Proc. 23, 253 (1984); Appl. Phys. Lett. 44, 589 (1984).CrossRefGoogle Scholar
6. Oehrlein, G. S., Ghez, R., Fehribach, J. D., Gorey, E. F., Sedgwick, T. O., Cohen, S. A., and Deline, V. R., Proc. 13th Int. Conf. on Defects in Semiconductors, eds. Kimerling, L. C. and Parsey, J. M. Jr (Metallurgical Soc. of AIME, 1984) p. 539.Google Scholar
7. Fair, R. B., Wortman, J. J., and Liu, J., J. Electrochem. Soc. 131, 2387 (1984).CrossRefGoogle Scholar
8. Cho, K., Numan, M., Finstad, T. G., Chu, W. K., Liu, J., and Wortman, J. J., Appl. Phys. Lett. 47, 1321 (1985).Google Scholar
9. Sedgwick, T. O., Michel, A. E., Deline, V. R., Cohen, S. A., and Lasky, J. B., J. Appl. Phys. 63, 1452 (1988).Google Scholar
10. Kim, Y., Massoud, H. Z., and Fair, R. B., J. Electronic Materi. 18, 143 (1989).CrossRefGoogle Scholar
11. Chu, W. K., Numan, M. Z., Zhang, J. Z., and Sandhu, G. S., Nucl. Instru. & Meth. B37/38, 365 (1989).CrossRefGoogle Scholar
12. Cowern, N. E. B., Janssen, K. T. F., and Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
13. Kim, Y. M., Lo, G. Q., Kwong, D. L., Tasch, A. F., and Novak, S., Appl. Phys. Lett. 56, 1254 (1990).CrossRefGoogle Scholar
14. Raineri, V., Schreutelkamp, R. J., Saris, F. W., Janssen, K. T. F., and Kaim, R. E., Appl. Phys. Lett. 58, 922 (1991).CrossRefGoogle Scholar
15. Yu, N., Chu, W. K., Patnaik, B., Parikh, N., Corcorran, S., Kirschbaum, C., and Varahramyan, K., Nucl. Instru. & Meth. B59, 1061 (1991).Google Scholar
16. Lin, A. M., Antoniadis, D. A., and Dutton, R. W., J. Electrochem. Soc. 128, 1131 (1981).CrossRefGoogle Scholar
17. Angelucci, R., Cembali, F., Negrini, P., Servidori, M., and Solmi, S., J. Electrochem. Soc. 134, 3130 (1987).CrossRefGoogle Scholar
18. Fahey, P., Dutton, R. W., and Hu, S. M., Appl. Phys. Lett. 44, 777 (1984).Google Scholar
19. Schreutelkamp, R. J., Saris, F. W., Kaim, R.E., Westendorp, J. F. M., Janssen, K. T. F., and Ottenheim, J. J. M., to be submitted to J. Appl. Phys.Google Scholar
20. Alessandrini, E. I., Chu, W. K., and Poponiak, M. R., J. Vac. Sci. Technol. 16, 342 (1979).Google Scholar