Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T02:09:11.162Z Has data issue: false hasContentIssue false

Thermal and Photoinduced Decomposition Pathways of Arsine on GaAs(100)

Published online by Cambridge University Press:  25 February 2011

X.-Y. Zhu
Affiliation:
Department of Chemistry, University of Texas, Austin,TX 78712.
M. Wolf
Affiliation:
Department of Chemistry, University of Texas, Austin,TX 78712.
T. Huett
Affiliation:
Department of Chemistry, University of Texas, Austin,TX 78712.
J. M. White
Affiliation:
Department of Chemistry, University of Texas, Austin,TX 78712.
Get access

Abstract

We have studied the thermal and photoinduced dissociation pathway of AsH3 on the Ga-rich GaAs(100) surface. Arsine adsorbs molecularly at 115 K and dissociates upon either heating to above 140 K or upon irradiation with 3.5 - 6.4 eV photons. The decomposition of arsine is accompanied by the formation of surface Ga-H species, which are thermally and photochemically more stable than surface AsHx. A comparison of the wavelength dependence for adsorbed and gas phase arsine reveals that the excitation mechanism of the AsH3 surface photochemistry is substrate mediated, which probably involves a charge transfer between surface states and the adsorbate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, F. T. J., Prog. Solid. State Chem. 19, 111 (1989).Google Scholar
2. Usuri, A. and Watanabe, H., Ann. Rev. Mater. Sci. 21, 185 (1991).Google Scholar
3 Balk, P., Fischer, M., Grundmann, D., Lückerath, R., Lüth, H., and Richter, W., J. Vac. Sci. Technol. B, 59 1453 (1987).Google Scholar
4. Tamaru, K., J. Chem. Phys 59 777 (1957).Google Scholar
5. Larson, C. A., Buchanan, N. I., and Stringfellow, G. B., Appl. Phys. Lett. 52, 480 (1988).Google Scholar
6. Wolf, M., Zhu, X.-Y., Huett, T., and White, J. M., Surf. Sci. (submitted).Google Scholar
7. Zhu, X.-Y., Wolf, M., and White, J. M., J. Chem. Phys. (submitted).Google Scholar
8. Zhu, X.-Y., and White, J. M., J. Chem. Phys. 94, 1555 (1991).Google Scholar
9. Drathen, P., Ranke, W., and Jacobi, K., Surf. Sci. 77, L162 (1978).Google Scholar
10. Bachrach, R. Z., Bauer, R. S., Chiaradia, P. and Hansson, G.V., J. Vac. Sci. Technol. 18, 797 (1981).Google Scholar
11. Creighton, J. R., Surf. Sci. 234, 287 (1990).CrossRefGoogle Scholar
12. Lukerath, R., Tommak, P., Hertling, A., Koss, H. J., Balk, P., Jensen, K. F., and Richter, W., J. Cryst. Growth 93, 151 (1988).Google Scholar
13. Leys, M.R. and Veenvliet, H., J. Cryst. Growth 93,145 (1988).CrossRefGoogle Scholar
14. Dubois, L.H and Schwarz, G. P., Phys. Rev. B, 26, 794 (1982).CrossRefGoogle Scholar
15. McConagie, V. M. and Nielsen, H. H., Phys. Rev. 75, 633(1949).Google Scholar
16. Gee, P. E. and Hicks, R. T., Mater. Res. Soc. Symp. Proc. 222 (1991).Google Scholar
17. Frankel, D. J., Yu, C., Harbison, J. P., and Farrell, H. H., J. Vac. Sci. Technol. B, 5, 1113 (1987).Google Scholar
18. Sasaki, M., Kawakyu, Y., and Mashita, M., Jap. J. Appl. Phys. 28 L131 (1989).Google Scholar
19. Richter, L., Buntin, S. A., King, D. A., and Cavanagh, R.R., Phys. Rev. Lett. 65, 1957 (1990).CrossRefGoogle Scholar
20. Creighton, J. R. and Banse, B. A., Mater. Res. Soc. Symp. Proc. 222 (1991).Google Scholar