Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T16:56:15.470Z Has data issue: false hasContentIssue false

Thermal and Electrical Transport Properties of Sheared and Un-Sheared Thin-Film Polymer/CNTs Nanocomposites

Published online by Cambridge University Press:  17 June 2014

Parvathalu Kalakonda
Affiliation:
Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Georgi Y. Georgiev
Affiliation:
Department of Natural Sciences - Physics, Assumption College, Worcester, MA, 01609, USA Department of Physics, Tufts University, Medford, MA, USA
Yaniel Cabrera
Affiliation:
Department of Physics, Tufts University, Medford, MA, USA
Robert Judith
Affiliation:
Department of Physics, Tufts University, Medford, MA, USA
Germano S. Iannacchione
Affiliation:
Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
Peggy Cebe
Affiliation:
Department of Physics, Tufts University, Medford, MA, USA
Get access

Abstract

Transport properties have been measured transverse to the plane of sheared and un-sheared thin-film nanocomposites of isotactic Polypropylene (iPP) and multiwall carbon nanotubes (MWCNTs) at various MWCNT concentrations. The sheared samples were processed in the melt at 200 0C at 1 Hz in a Linkan microscope shearing hot stage. The thermal and electrical conductivity measurements were performed on the same cell arrangement with the transport perpendicular to the thin-film plane using a DC method. The thermal and electrical conductivity perpendicular to the surface of the films are higher for the un-sheared as compared to the sheared samples. Interestingly, the percolation threshold appears smeared in both conductivity measurements likely due to pressing and shear treatment of the films, or the spacing between the data points. Important for electronics packaging and materials for which those anisotropic properties are highly desired this work presents important advances in understanding the structure-transport property relations.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Georgiev, G., McIntyre, M. B., Judith, R., Gombos, E. A., Cebe, P., in Symposium Artificially Induced Crystalline Alignment Thin Films and Nanostructures (Cambridge Journal Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, 1308, Warrendale, PA, 2011), DD0709, DOI:10.1557/opl.2011.157, mrsf10-1308-dd07-09.Google Scholar
Chang, C.Y., Phillips, E. M., Liang, R., Tozer, S. W., Wang, B., Zhang, C., Chiu, H.T., J. Appl. Polym. Sci. 10, 38209 (2013)Google Scholar
Bouchard, J., Cayla, A., Devaux, E., Campagne, C., Composites Science and Technology, 86, 177 (2013)10.1016/j.compscitech.2013.07.017CrossRefGoogle Scholar
Kalakonda, P., Gombos, E. A., Hoonjan, G. S., Georgiev, G.Y., Iannacchione, G. S. and Cebe, P., in Symposium DD Transport Properties in Polymer Nanocomposites II, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1410, Warrendale, PA, 2012), Paper# DD1.1; Control ID: 1130053; DOI: 10.1557/opl.2012.817. mrsf11-1410-dd05-06Google Scholar
Kalakonda, P., Sarkar, S., Gombos, E. A., Georgiev, G.Y., Iannacchione, G.S. and Cebe, P., in Symposium V Multifunctional Polymer-based Materials, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1403, Warrendale, PA, 2012), Paper# V12.13; Control ID: 1160868; DOI: 10.1557/opl.2012.371. mrsf11-1403-v12-13Google Scholar
Kalakonda, P., Iannacchione, G. S., Daly, M., Georgiev, G. Y, Cabrera, Y., Judith, R., Cebe, P., J. Appl. Polym. Sci. 10, 39204(2013)Google Scholar
Gojny, F., Wichmann, M., Fiedler, B., Kinloch, I., Bauhofer, W., Windle, A., Schulte, K., Polymer 47 (6), 2036 (2006)10.1016/j.polymer.2006.01.029CrossRefGoogle Scholar
Li, L., Jeu, W., Faraday Discuss. (128), 299319 (2005).10.1039/b402659dCrossRefGoogle Scholar
Georgiev, G., Cabrera, Y., Wielgus, L., Iftikhar, Z., Mattera, M., Gati, P., Potter, A., Cebe, P., in Artificially Induced Grain Alignment in Thin Films, edited by Matias, V., Hammond, R., Moon, S.-H., Hühne, R. (Mater. Res. Soc. Symp. Proc. 1150, Warrendale, PA, 2009), RR04-16, p. 185190.Google Scholar
Kalakonda, Parvathalu, Daly, Michael, Xu, Kaikai, Cabrera, Yaniel, Judith, Robert, Iannacchione, Germano S., Georgiev, Georgi Y. and Cebe, Peggy, Structure-Electrical Transport Property Relationship of Anisotropic iPP/CNT Films, (Cambridge Journals Online, Cambridge University Press, UK, Materials Research Society Symposium Proceeding, Volume 1499, Warrendale, PA, 2013),DOI: 10.1557/opl.2013.445 Google Scholar
Song, W., Kinloch, I.A., Windle, A.H., Science (302), 1363 (2003).10.1126/science.1089764CrossRefGoogle Scholar
Dawid, A., Gwizdała, W., Journal of Non-Crystalline Solids 355, 13021306 (2009).10.1016/j.jnoncrysol.2009.05.034CrossRefGoogle Scholar
Gwizdała, W., Górny, K., Gburski, Z., Journal of Molecular Structure 887, 148151 (2008).10.1016/j.molstruc.2007.12.045CrossRefGoogle Scholar
Georgiev, G., Gombos, E. A., McIntyre, M., Mattera, M., Gati, P., Cabrera, Y., Cebe, P., in Nanoscale Pattern Formation, edited by Chason, E., Cuerno, R., Gray, J., Heinig, K.H., (Mater. Res. Soc. Symp. Proc. 1228E, Warrendale, PA, 2010), KK1181.Google Scholar
Kim, I., Tannenbaum, A., Tannenbaum, R., Carbon 49(1), 5461 (2011).10.1016/j.carbon.2010.08.041CrossRefGoogle ScholarPubMed