Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T02:12:34.349Z Has data issue: false hasContentIssue false

Theoretical Performance of MID-IR Broken-Gap Superlattice Quantum Well Lasers

Published online by Cambridge University Press:  10 February 2011

Michael E. Flatté
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
C. H. Grein
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607
J. T. Olesberg
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
T. F. Boggess
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
Get access

Abstract

We will present calculations of the ideal performance of mid-infrared InAs/InGaSb superlattice quantum well lasers. For these systems several periods of an InAs/InGaSb type-II superlattice are grown in quantum wells. Calculations of the non-radiative and radiative lifetimes of the carriers utilize the full non-parabolic band structure and momentum-dependent matrix elements calculated from a semi-empirical multilayer K · P theory. From these lifetimes, threshold current densities have been evaluated for laser structures. We find serious problems with the hole and electron confinement in the superlattice quantum wells grown to date, and propose a four-layer superlattice structure which corrects these problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, H.K., Turner, G.W. and Manfra, M.J., Electron. Lett. 32, 1296 (1996);Google Scholar
Choi, H.K., Turner, G.W., Manfra, M.J. and Connors, M.K., Appl. Phys. Lett. 68, 2936 (1996).Google Scholar
2. Chow, D.H., Miles, R.H., Hasenberg, T.C., Kost, A.R., Zhang, Y.H., Dunlap, H.L. and West, L., Appl. Phys. Lett. 67, 3700 (1995);Google Scholar
Hasenberg, T.C., Chow, D.H., Kost, A.R., Miles, R.H. and West, L., Electron. Lett. 31, 275 (1995).Google Scholar
3. Malin, J.I., Meyer, J.R., Felix, C.L., Lindle, J.R., Goldberg, L., Hoffman, C.A., and Bartoli, F.J., Appl. Phys. Lett. 68, 2976 (1996);Google Scholar
Meyer, J. R., Hoffman, C.A., Bartoli, F.J., and Ram-Mohan, L.R., Appl. Phys. Lett. 67, 757 (1995).Google Scholar
4. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., and Cho, A.Y., Science 264, 553 (1994).Google Scholar
Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Hutchinson, A.L., and Cho, A.Y., Electron. Lett. 32, 560 (1996).Google Scholar
5. Flatté, M.E., Grein, C.H., Ehrenreich, H., Miles, R.H. and Cruz, H., J. Appl. Phys. 78, 4552 (1995).Google Scholar
Grein, C.H., Young, P.M., and Ehrenreich, H., J. Appl. Phys. 76, 1940 (1994).Google Scholar
6. Grein, C.H., Young, P.M., Flatté, M.E., and Ehrenreich, H., J. Appl. Phys. 78, 7143 (1995).Google Scholar
7. McCahon, S.W., Anson, S.A., Jang, D.-J., Flatté, M.E., Boggess, T.F., Chow, D.H., Hasenberg, T.C., and Grein, C.H., Appl. Phys. Lett. 68, 2135 (1996).Google Scholar
8. The apparent gap (60meV) is smaller than that seen in Figure 5 since there are transitions for momenta not shown on Figure 5 which somewhat narrow the gap.Google Scholar