Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-30T17:57:29.906Z Has data issue: false hasContentIssue false

Theoretical Design of Polymeric Materials for Nonlinear Optics

Published online by Cambridge University Press:  25 February 2011

M. Dory
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherche sur les Materiaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
V. P. Bodart
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherche sur les Materiaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. Delhalle
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherche sur les Materiaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. M. André
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherche sur les Materiaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. L. Brédas[a]
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherche sur les Materiaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Get access

Abstract

We present results of ab initio calculations on the electric response of oligomers representative of conjugated polymers of interest. We mainly focus on : (i) polyacetylenes, polyynes, polydiacetylenes, and polycumulenes; (ii) polyaromatic systems in both undoped and doped states; and (iii) polyaromatic vinylene compounds. Our aim is to find trends among related series of conjugated polymers in order to assess their potentialities for nonlinear optics applications and to help in designing materials with optimal characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nonlinear Optical Properties of Organic Polymeric Materials, edited by Williams, D.J. (ACS Symposium Series, Washington, 1983).Google Scholar
[2] Nonlinear Optical Properties of Organic Molecules and Crstals, edited by Chemla, D.S. and Zyss, J. (Academic, New York, 1987).Google Scholar
[3] Sauteret, C., Herman, J.P., Frey, R., Pradere, F., Ducuing, J., Baughman, R.M., Chance, R.R., Phys. Rev. Lett. 36 956 (1976).Google Scholar
[4] Carter, G.M., Thakur, M.K., Chen, Y.J., Hryniewicz, J.V., Appl. Phys. Lett. 4., 457 (1985).Google Scholar
[5] Chollet, P.A., Kajzar, F., Messier, J., Synth. Met. 18. 459 (1987).CrossRefGoogle Scholar
[6] Heeger, A.J., Moses, D., Sinclair, M., Synth. Met.. 17 343 (1987).Google Scholar
[7] Kajzar, F., Etemad, S., Baker, G.L., Messier, J., Synth. Met.17 563 (1987).CrossRefGoogle Scholar
[8] Heeger, A.J., Moses, D., Sinclair, M., Synth. Met. 15.95 (1986).Google Scholar
[9] Roberts, G.G., Adv. in Phys.34. 475 (1985).CrossRefGoogle Scholar
[10] Bodart, V.P., Delhalle, J., André, J.M., Zyss, J., in Polydiacetylenes : Synthesis. Structure and Electronic Properties, edited by Bloor, D. and Chance, R.R. (Martinus Nijhoff Publishers, Dordrecht, 1984), pp. 125.Google Scholar
[11] Bodart, V.P., Delhalle, J., Andrd, J.M., Zyss, J., Canad. J. Chem. 61 1631 (1985).Google Scholar
[12] Binkley, J.S., Frish, M.J., Defrees, D.J., Raghavachari, K., Whiteside, R.A., Schlegel, H.B., Fluder, E.M., Pople, J.A., Gaussian-80, Carnegie-Mellon University, Pittsburgh, Pennsylvania (1981).Google Scholar
[13] Cohen, H.D., Roothaan, C.J., J. Chem. Phys. 43. 534 (1965).Google Scholar
[14] Rutishauser, H., Numer. Math. 5, 48 (1963).CrossRefGoogle Scholar
[15] André, J.M., Barbier, Ch., Bodart, V.P., Delhalle, J., in Ref. 2, Vol.2, pp. 137.Google Scholar
[16] Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G., Phys. Rev. Lett. 39,1098 (1977).Google Scholar
[17] Naarmann, H., Theophilou, N., Synth. Met. 22 1 (1987).Google Scholar
[18] Davies, P.L., Trans Faraday Soc. 48 789 (1952).Google Scholar
[19] Rustagi, K.C., Ducuing, J., Opt. Commun. 10, 258 (1974); H.F. Hameka, J. Chem. Phys. 67. 2935 (1977).Google Scholar
[20] Flytzanis, C., in Ref. 2, Vol.2, pp.121.Google Scholar
[21] Garito, A.F., in Proceedings of the Symposium on Electroresponsive Polymer (Brookhaven, Oct. 1987), Mol. Cryst. Liq. Cryst., in press.Google Scholar
[22] De Melo, C.P., Silbey, R., Chem. Phys. Lett. 140, 537 (1987).Google Scholar
[23] Delhalle, J., Bodart, V.P., Dory, M., Andrd, J.M., Zyss, J., Int. J. Quantum Chem. s19, 313 (1986).Google Scholar
[24] Bodart, V.P., Delhalle, J., Dory, M., Fripiat, J.G., Andre, J.M., J. Opt. Soc. Amer. B 4, 1047 (1987).Google Scholar
[25] Irngartinger, H., Götzmann, W., Angew. Chem. Int. Ed. Engl. 25. 340 (1986).Google Scholar
[26] Younang, E., Delhalle, J., André, J.M., New J. Chem.. 11 (5), 403 (1987).Google Scholar
[27] Handbook of Conducting Polymers, edited by Skotheim, T.A. (Marcel Dekker, New York, 1986).Google Scholar
[28] Brddas, J.L., Thémans, B., Fripiat, J.G., Andre, J.M., Chance, R.R., Phys. Rev. B 29, 6761 (1984).Google Scholar
[29] Prasad, P.N., in Proceedings of the Symposium on Electroresponsive Polymers (Brookhaven, Oct. 1987), Mol. Cryst. Liq. Cryst., in press.Google Scholar
[30] Hirooka, H., Doi, T., Synth. Met. 17 209 (1987).CrossRefGoogle Scholar
[31] Jen, K.Y., Elsenbaumer, R.L., in Proceedings of the Symposium on Electroresponsive Polymers (Brookhaven, Oct. 1987), Mol. Cryst. Liq. Cryst., in press.Google Scholar
[32] Sinclair, M., in Proceedings of the Symposium on Electroresponsive Polymers (Brookhaven, Oct. 1987), Mol. Cryst. Liq. Cryst., in press.Google Scholar