Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T21:25:35.066Z Has data issue: false hasContentIssue false

Theoretical and Experimental Investigation of Ultrathin Oxynitrides

Published online by Cambridge University Press:  10 February 2011

A.A. Demkov
Affiliation:
Semiconductor Product Sector, Motorola, Inc. Mesa, AZ
R. Liu
Affiliation:
Semiconductor Product Sector, Motorola, Inc. Mesa, AZ
Get access

Abstract

Microscopic properties of thin oxynitrides are investigated using a combination of the infrared ATR and ab-initio electronic structure methods. We use a theoretical structural model based on the Si-SiO2 interface with the oxide thickness of 0.8 nm. The interfacial region amounts to about 0.4 nm (the total thickness of the oxygen containing layer is 1.2 nm). The Quantum Molecular Dynamics simulations suggest that N accumulates at the interface. We have generated samples with the nitrogen concentrations from 1.69 × 1014 cm−2 to 6.78 × 1014 cm−2. The structural analysis of nitrogen containing cells indicates a significant improvement of the oxide layer and the strain reduction at the interface. We have performed a calculation of the vibrational density of states. A N-localized mode at 809 cm-1 has been identified. The experimental ifnrared ATR data is in qualitative agreement with the calculation. The valence band offset calculations reveal a 0.3 eV increase of the offset due to nitrogen at the highest nitrogen concentration considered. The valence band offset increase comes mainly from the structural change in the oxide layer. The interfacial dipole contributes 0.12 eV to the increase, while the structural change in the oxide layer gives additional 0.2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

E-mail address: alex.demkov@motorola.com

References

REFERENCES

1.Hegde, R. I., Maiti, B., and Tobin, P.J., J. Electrochem. Soc. 144, 1081 (1997)Google Scholar
2.Wu, Y., Niimi, H., Yang, H., Lucovsky, G., and Fair, R.B., J. Vac. Sci. Technol. B 17, 1813 (1999).Google Scholar
3.Lucovsky, G., Niimi, H., Wu, Y., Parker, C.R., and Hauser, J.R., J. Vac. Sci. Technol. B 16, 1721 (1998).Google Scholar
4.Phillips, J.C., J. Vac. Sci. Technol. B 17, 1803 (1998).Google Scholar
5.Lucovsky, G., Wu, Y., Niimi, H., Misra, V., and Philips, J.C., Appl. Phys. Lett. 74, 2005 (1999).Google Scholar
6.Demkov, A.A. and Sankey, O.F., Phys. Rev. Lett. 83, 2038 (1999).Google Scholar
7.Demkov, A. A., Ortega, J., Sankey, O. F., and Grumbach, M., Phys Rev. B 52, 1618 (1995).Google Scholar
8.Sankey, O. F., Demkov, A. A., Windl, W., Fritsch, J. H., Lewis, J. P., Fuentes-Cabrera, M., Int. J. Quant. Chem. 69, 327 (1998).Google Scholar
9.Gusev, E.P., Lu, H.-C., Garfunkel, E.L., Gustafson, T., Green, M.L., IBM J. Res. Develop. 43, 265 (1999).Google Scholar
10.Grun, R., Acta Cryst. B 35, 800 (1979).Google Scholar
11.Liang, J., Topor, L., and Navrotsky, A., J. Mater. Res. 14, 1 (1999).Google Scholar
12.Srinivasa, S.R., Cartz, L., Joergensen, J.D., Worlton, T.G., Beyerlein, R.A., and Billy, M.. J. Appl. Cryst. 10, 167 (1977).Google Scholar
13.Zhao, G.L., and Bachlencher, M.E., Phys. Rev. B 58, 1887 (1998).Google Scholar