Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T04:38:19.408Z Has data issue: false hasContentIssue false

Terahertz measurements of the Photoactive Protein Bacteriorhodopsin mutant D96N: M and P states

Published online by Cambridge University Press:  15 March 2011

J.-Y. Chen*
Affiliation:
Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY
J. R. Knab
Affiliation:
Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY
J. Cerne
Affiliation:
Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY
J. R. Hillebrecht
Affiliation:
Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, Storrs, CT
R. R. Birge
Affiliation:
Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, Storrs, CT
A. G. Markelz
Affiliation:
Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY
*
*corresponding author, jchen9@buffalo.edu
Get access

Abstract

We use terahertz (THz) spectroscopy as a biomaterials characterization tool. Previously we have shown a strong contrast between the THz dielectric response for wild type (WT) and D96N mutant of bacteriorhodopsin. In those studies we observed a large increase in the THz absorbance of WT with excitation to thermally captured photo-intermediates whereas no such increase in absorbance was observed for the mutant D96N. These results suggest that the THz response is sensitive to structural changes and relative flexibility of biomolecules. However the photo-intermediate populations of the WT and D96N samples were not equivalent in those measurements. While the WT samples had relaxed (bR), M and P state intermediates present, the D96N samples had only bR and M states. Here we present terahertz absorbance measurements of D96N as a function of M and P state populations at room temperature. The THz response is constant for intermediate states populations up to 23% M state and up to 30% P state. These results verify that there is a fundamental difference in the conformational dynamics as measured by THz dielectric response for a single residue mutation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chance, M. R., Campbell, B. F., Hoover, R. et al. , J. Biol. Chem. 262 (15), 6959 (1987); Y. Imamoto, M. Kataoka, and F. Tokunaga, Biochemistry 35 (45), 14047-14053 (1996); I. H. M. VanStokkum, J. Gural, W. D. Hoff et al., Prog. Biophys. Mol. Biol. 65, PA433-PA433 (1996).Google Scholar
2 Ferrand, M., Dianoux, A. J., Petry, W. et al. , Proc. Natl. Acad. Sci USA 90, 96689676 (1993).Google Scholar
3 Bartunik, H. D., Jolles, P., Berthou, J. et al. , Biopolymers 21, 4350 (1982); N. A. Dencher, D. Dresselhaus, G. Zaccai et al., Proc. Natl. Acad. Sci. U. S. A. 86 (20), 7876-7879 (1989); M. Diehl, W. Doster, W. Petry et al., Biophys. J. 73 (5), 2726 (1997); W. Doster, S. Cuszck, and W. Petry, Nature 337, 754-756 (1989); G. Zaccai, Science 288, 1604-1607 (2000).Google Scholar
4 Fitter, J., Verclas, S.A.W., Lechner, R.E. et al. , Physica B 266, 3540 (1999).Google Scholar
5 Whitmire, S., Markelz, A.G., Hillebrecht, J. R. et al. , Phys. Med. Biol. 21, 3797 (2002).Google Scholar
6 Cheville, R. A. and Grischkowsky, D., Opt. Lett. 20 (15), 1646 (1995); X. -C. Zhang, B. B. Hu, J. T. Darrow et al., Appl. Phys. Lett. 56, 1011 (1990).Google Scholar
7 Brucherseifer, M., Nagel, M., Bolivar, P. Haring et al. , Appl. Phys. Lett. 77 (24), 40494051 (2000); A. G. Markelz, A. Roitberg, and E. J. Heilweil, Chem. Phys. Lett. 320, 42 - 48 (2000); S. E. Whitmire and A. G. Markelz, in Sensing Science and Electronic Technology at THz Frequencies, edited by D. Woolard, M. S. Shur, and W. Leorop (Scientific World Press, Singapore, 2003), Vol. 2.Google Scholar
8 Whitmire, S. E., Wolpert, D., Markelz, A. G. et al. , Biophys. J. 85 (2) (2003).Google Scholar
9 Lanyi, J.K., International Review of Cytology 187, 161202 (1999).Google Scholar
10 Birge, Robert R., Gillespie, Nathan B., Izaguirre, Enrique W. et al. , J. Phys. Chem. B 103, 10746 (1999).Google Scholar
11 Varo, G. and Lanyi, J. K., Biochemistry 30, 50085015 (1991); D. Zeisel and N. Hampp, J. Phys. Chem. 96, 7788-7792 (1992).Google Scholar
12 Oesterhelt, D. and Stoeckenius, W., Methods of Enzymology 31, 667678 (1974).Google Scholar
13 Zimanyi, L. and Lanyi, J. K., Biophys. J. 64, 240251 (1993).Google Scholar
14 Gillespie, N. B., Wise, K. J., Ren, L. et al. , J. Phys. Chem. B 106, 1335213361 (2002).Google Scholar