Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T00:15:29.893Z Has data issue: false hasContentIssue false

Temperature Dependence of Yield Stress and Dislocation Dissociation in L12-Ordered Intermetallic Compounds

Published online by Cambridge University Press:  10 March 2011

Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan
Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The temperature dependence of yield stress and the associated dislocation dissociation in L12 intermetallic compounds are investigated in order to check the feasibility of the classification of L12 intermetallic compounds so far reported in terms of the planarity of core structures of partial dislocations with b = 1/2<110> and 1/3<112> on {111} and {001} glide planes. In contrast to what is believed from the reported classification, the motion of APB-coupled dislocations is proved to give rise to the rapid decrease in yield stress at low temperatures for Co3Ti and Co3 (Al,W). The temperature dependence of yield stress at low temperatures is newly interpreted in terms of a thermal component of solid-solution hardening, at least, for these two L12 compounds. We have proposed a new way to describe the yield stress–temperature curves of L12 compounds with three parameters (the athermal and thermal components of solid-solution hardening and the anomalous strengthening component) when the dislocation dissociation scheme is of the APB-type.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamaguchi, M., Inui, H., and Ito, K., Acta Mater. 48, 307 (2000).Google Scholar
2. Pope, D.P. and Ezz, S.S., Int. Metall. Rev., 29, 136 (1984).Google Scholar
3. Liu, C. T. and Pope, D. P., in Intermetallic Compounds Principles and Practice Vol. 2, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, Chichester, England, 1995), p. 17.Google Scholar
4. Veyssière, and Saada, G., in Dislocations in Solids; Vol. 10, edited by Nabarro, F. R. N. and Duesbery, (Elsevier, Amsterdam, 1996), p. 253.Google Scholar
5. Wee, D. M., Pope, D. P., and Vitek, V., Acta Metall. 32, 829 (1984).Google Scholar
6. Wu, Z. L., Pope, D. P., and Vitek, V., Philos. Mag. A 70, 159 (1994).Google Scholar
7. Yamaguchi, M. and Umakoshi, Y., Prog. Mater Sci. 34, 1 (1990).Google Scholar
8. Vitek, V. and Paidar, V., in Dislocations in Solids; Vol. 14, edited by Hirth, J. P. (Elsevier, Amsterdam, 2008), p. 439.Google Scholar
9. Okamoto, N. L., Ohashi, T., Adachi, H., Kishida, K., Inui, H., and Veyssière, P., submitted to Philos. Mag.Google Scholar
10. Takasugi, T., Hirakawa, S., Izumi, O., Ono, S., and Watanabe, S., Acta Metall. 35, 2015 (1987).Google Scholar
11. Veyssière, P. and Douin, J., in Intermetallic Compounds Principles and Practice Vol. 1, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, Chichester, England, 1995), p. 519.Google Scholar
12. Sun, Y. Q. and Hazzledine, P. M., in Dislocations in Solids; Vol. 10, edited by Nabarro, F. R. N. and Duesbery, M. S. (Elsevier, Amsterdam, 1996), p. 27.Google Scholar
13. Liu, Y., Takasugi, T., Izumi, O., and Takahashi, T., Philos. Mag. A 59, 437 (1989).Google Scholar
14. Oya-Seimiya, Y., Shinoda, T., and Suzuki, T., Mater. Trans. JIM 37, 1464 (1996).Google Scholar
15. Kocks, U. F., Argon, A. S., and Ashby, M. F., Prog. Mater Sci. 19, 1 (1975).Google Scholar
16. Wille, T. and Schwink, C., Acta Metall. 34, 1059 (1986).Google Scholar
17. Bontemps-Neveu, C., Thèse de Doctorat (Univ. de Paris-Sud, Orsay, France, 1991).Google Scholar
18. Paidar, V., Pope, D. P., and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
19. Hirsch, P. B., Philos. Mag. A 65, 569 (1992).Google Scholar
20. Chrzan, D. C. and Mills, M. J., in Dislocations in Solids; Vol. 10, edited by Nabarro, F. R. N. and Duesbery, M. S. (Elsevier, Amsterdam, 1996), p. 187.Google Scholar