Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-13T14:34:44.147Z Has data issue: false hasContentIssue false

Temperature Dependence of Electrical Properties of NiO Thin Films for Resistive Random Access Memory

Published online by Cambridge University Press:  01 February 2011

Ryota Suzuki
Affiliation:
ryota_szk@semicon.kuee.kyoto-u.ac.jp, Kyoto University, Electric Science and Engineering, Kyotodaigaku-katsura, Nishikyo, Kyoto, 615-8510, Japan
Jun Suda
Affiliation:
suda@kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering, Kyotodaigaku-katsura, Nisikyo, Kyoto, 615-8510, Japan
Tsunenobu Kimoto
Affiliation:
kimoto@kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering, Kyotodaigaku-katsura, Nisikyo, Kyoto, 615-8510, Japan
Get access

Abstract

Temperature dependence of electrical properties in NiO thin films for ReRAM applications has been investigated. I-V measurements have been carried out in the temperature range from 100K to 523K. The resistance in the high resistance state (HRS) is almost independent of temperature below 250K, whereas it decreases with an activation energy of 300 meV above 250K. Hopping conduction and band conduction may be dominant in the low- and high-temperature range, respectively. Admittance spectroscopy on the NiO/n+-Si structure¡¡reveals the existence of a high density of traps, which may contribute to the conduction in HRS. In the low resistance state (LRS), however, the resistance slightly increased in the whole temperature range and the trend is similar to that of metallic Ni film, indicating the metallic Ni defects is related to the conduction in LRS. The Pt/NiO/Pt structure demonstrated stable resistance switching even at temperature as high as 250°C or higher. Since other competitive nonvolatile memories will face severe difficulty in high-temperature operation, the present ReRAM shows promise for high-temperature application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seo, S. Lee, M. J. Seo, D. H. Jeoung, E. J. Suh, D.-S. Joung, Y. S. Yoo, I. K. Hwang, I. R. Kim, S. H. Byun, I. S. Kim, J.-S., Choi, J. S. and Park, B. H. Appl. Phys. Lett., 85, 5655 (2004).Google Scholar
2. Choi, B. J. Jeong, D. S. Kim, S. K. Rohde, C. Choi, S. Oh, J. H. Kim, H. J. Hwang, C. S. Szot, K. Waser, R. Reichenberg, B. and Tiedke, S. J. Appl. Phys., 98, 033715 (2005).Google Scholar
3. Gibbons, J. F. and Beadle, W. E. Solid State Electron.,7, 785 (1964).Google Scholar
4. Sato, Y. Kinoshita, K. Aoki, M. and Sugiyama, Y. Appl. Phys. Lett. 90, 033503 (2007).Google Scholar
5. Rozenberg, M. J. Inoue, I. H. and S'anchez, M. J., Appl. Phys. Lett. 88, 033510 (2006).Google Scholar
6. Van Daal, H. J. and Bosman, A. J. Phys. Rev., 158, 736 (1967).Google Scholar
7. Fors, R. Khartsev, S. I. and Grishin, A. M. Phys. Rev. B, 71, 045305 (2005).Google Scholar
8. Kim, D. C. Seo, S. Ahn, S. E. Suh, D.-S., Lee, M. J. Park, B.-H., Yoo, I. K. Baek, I. G. Kim, H.-J., Yim, E. K. Lee, J. E. Park, S. O. Kim, H. S. Chung, U.-I., Moon, J. T. and Ryu, B. I. Appl. Phys. Lett., 88, 202102 (2006).Google Scholar
9. Jung, K. Seo, H. Kim, Y. Im, H. Hong, J. Park, J.-W. and Lee, J.-K., Appl. Phys. Lett. 90, 052104 (2007).Google Scholar
10. Pautrat, J. L. Katircioglu, B. Magnea, N. Bensahel, D. Pfister, J. C. and Revoil, L. Solid State Electron., 23, 1159 (1980).Google Scholar