Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T19:47:37.820Z Has data issue: false hasContentIssue false

Temperature Dependence of Compositional Disordering of Gaas-Alas Superlattices During Mev Kr Irradiation

Published online by Cambridge University Press:  28 February 2011

R. P. Bryan
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
L. M. Miller
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
T. M. Cockerill
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
J. J. Coleman
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
J. L. Klatt
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
R. S. Averback
Affiliation:
Materials Research LaboratoryUniversity of Illinois Urbana, IL 61801
Get access

Abstract

The influence of the specimen temperature during MeV Kr irradiation on the extent of compositional disordering in GaAs-AlAs superlattices (SLs) has been determined. We have investigated whether radiation-enhanced diffusion (RED) could be employed to reduce the dose required to completely disorder a SL by ion implanation. Metalorganic chemical vapor deposition grown GaAs-AlAs SLs were implanted with 0.75 MeV Kr to a dose of 2×1016 cm−2 at various sample temperatures ranging from 133 K to 523 K. The extent of disordering induced by the irradiations was determined by Rutherford backscattering spectrometry and secondary ion mass spectrometry. For low temperature irradiations (133 K to 233 K), complete intermixing of the SL is observed. However, the extent of intermixing of the SL decreases with increasing specimen temperature between room temperature and 523 K. We propose two possible explanations to interpret these results: (i) that the amount of ion beam mixing decreases with increasing temperature; and (ii) that the RED coefficient is negative which suggests the existence of a miscibility gap in the GaAs-AlAs SL system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gavrilovic, P., Deppe, D. G., Meehan, K., Holonyak, N., Coleman, J. J., and Burnham, R. D., Appl. Phys. Lett. 47, 130 (1985).10.1063/1.96238Google Scholar
[2] Bryan, R. P., Coleman, J. J., Miller, L. M., Givens, M. E., Averback, R. S., and Klatt, J. L., Appl. Phys. Lett. 55, 94 (1989).10.1063/1.102098Google Scholar
[3] Bryan, R. P., Givens, M. E., Klatt, J. L., Averback, R. S., and Coleman, J. J., J. Electron. Mater. 18, 39 (1989).10.1007/BF02655342Google Scholar
[4] Averback, R. S., Nucl. Instrum. Methods Phys. Res. Sect. B 15, 675 (1986).10.1016/0168-583X(86)90391-5Google Scholar
[5] Wiedersich, H., Nucl. Instrum. Methods Phys. Res. Sect. B7/8, 1 (1985).Google Scholar
[6] Averback, R. S., Rubia, T. Diaz de la, and Benedek, R., Nucl. Instrum. Methods Phys. Res. Sect. B 33, 693 (1988).10.1016/0168-583X(88)90662-3Google Scholar
[7] Martin, G., Phys. Rev. B 30, 1424 (1984).10.1103/PhysRevB.30.1424Google Scholar
[8] Johnson, W. L., Cheng, Y. T., Rossum, M. Van, and Nicolet, M.-A., Nucl. Instrum. Methods Phys. Res. Sect. B 7/8, 657 (1985).10.1016/0168-583X(85)90450-1Google Scholar
[9] Bryan, R. P., Miller, L. M., Cockerill, T. M., Coleman, J. J., Klatt, J. L., and Averback, R. S., Phys. Rev. B 41, 3889 (1990).10.1103/PhysRevB.41.3889Google Scholar
[10] Miller, L. M. and Coleman, J. J., CRC Crit. Rev. Solid State Mater. Sci. 15, 1 (1988).10.1080/10408438808244623Google Scholar
[11] Williams, J. S. and Möller, W., Nucl. Instrum. Methods 157, 213 (1978).10.1016/0029-554X(78)90294-XGoogle Scholar
[12] Averback, R. S., Peak, D., and Thompson, L. J., Appl. Phys. A 39, 59 (1986).10.1007/BF01177164Google Scholar
[13] Laidig, W. D., Holonyak, N. Jr., Coleman, J. J., and Dapkus, P. D., J. Electron. Mater. 11, 1 (1982).10.1007/BF02654605Google Scholar
[14] Anderson, K. K., Donnelly, J. P., Wang, C. A., Woodhouse, J. D., and Haus, H. A., Appl. Phys. Lett. 53, 1632 (1988).10.1063/1.99934Google Scholar
[15] Chen, A.-B. and Sher, A., Phys. Rev. B 32, 3695 (1985).10.1103/PhysRevB.32.3695Google Scholar
[16] Stringfellow, G. B., J. Crytsal Growth 27, 21 (1974).10.1016/0022-0248(74)90416-3Google Scholar
[17] Wei, S.-H. and Zunger, A., Phys. Rev. Lett. 61, 1505 (1988).10.1103/PhysRevLett.61.1505Google Scholar
[18] Balzarotti, A., Letardi, P., and Motta, N., Solid State Commun. 56, 471 (1985).10.1016/0038-1098(85)90695-7Google Scholar
[19] Bublik, V. T. and Leikin, V. N., Phys. Stat. Sol. A 46, 365 (1978).10.1002/pssa.2210460148Google Scholar