Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-11T06:33:49.624Z Has data issue: false hasContentIssue false

Tem Observance and Analysis of the (000l), l=2n+l, Forbidden Reflections in Synthetic and Biological Hydroxyapatites

Published online by Cambridge University Press:  10 February 2011

J. Reyes-Gasga
Affiliation:
Instituto de Física, UNAM, Apartado Postal 20-364, 01000 Mexico D.F., MEXICO
M. Reyes-Reyes
Affiliation:
Instituto de Física, UNAM, Apartado Postal 20-364, 01000 Mexico D.F., MEXICO
R. García-García
Affiliation:
Instituto de Física, UNAM, Apartado Postal 20-364, 01000 Mexico D.F., MEXICO
Get access

Abstract

The systematic appearance of (000l), l=2n+1, forbidden reflections in the electron diffraction patterns of hydroxyapatite, both synthetic and natural (human tooth enamel), is discussed. Structural disorder, double diffraction, and modulated structures and are discussed as possible causes. Structural disorder and modulated structure could be responsible for the rupture of the reported symmetry, in which oxygen and hydrogen perform an important role.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Le, Geros R Z, 1991, Calcium Phosphates in Oral Biology and Medicine, Howard M Myers De, San Francisco California.Google Scholar
2. Moss, S, Dental and Oral Tissues. (Lea & Tebiger De., Philadelphia. London, 1990) pp. 234258.Google Scholar
3. Eanes, F D, 1979, J. Dent. Res. 58B, 829.Google Scholar
4. Young, R A, 1975, Clinical Orthopedics and Related Research, 113, 249.Google Scholar
5. Brés, E F, Cherns, D, Vincent, R and Morniroli, J P, 1993 a, Acta Cryst. B49, 56.Google Scholar
6. Young, R A, 1974, J. Dent. Res. 53, 193.Google Scholar
7. Young, R A and Elliott, V, 1966, Archs. Oral Biol. 11, 699.Google Scholar
8. Kay, M I, Young, R A and Posner, A S, 1964, Nature 204, 1050.Google Scholar
9. Arita, I H., Wilkinson, D W and Castaño, V M, 1995, Biomaterials 16, 5.Google Scholar
10. Marshall, A D and Lawless, K R, 1981, J. Dent Res. 60, 1773.Google Scholar
11. Reyes-Gasga, J, García, R and Vargas-Ulloa, L, 1997, Phil. Mag. A., 751023.Google Scholar
12. Senger B, Brès, E F, Hutchison, J L, Voegel, J C and Frank, R M., 1992, Phil Mag. A64, 665.Google Scholar
13. Brès, E F, Steuer, P, Voegel, J C, Frank, R M and Cuisinier, F G, 1993 b, J. Of Microscopy 170, 147.Google Scholar
14. Brès, E F, Hutchinson, J L, Senger, B, Voegel, J C and Frank, R M 1991, Ultramicroscopy 35, 305.Google Scholar
15. McKinley, W A and Feshbach, H, 1948, Phys. Rev. 74, 1759.Google Scholar
16. Mott, N F and Massey, H S W, 1965, The theory of atomic collision Claredon Press, Oxford. Pag. 837.Google Scholar
17. Reyes-Gasga, J and García, R, 1999, Submited to J. of Materials Science.Google Scholar
18. CRC Handbook of Chem. and Phys., 63 Edition (1982).Google Scholar