Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T18:09:19.446Z Has data issue: false hasContentIssue false

TEM Investigation of Arsenic Precipitates in Semi-Insulating GaAs

Published online by Cambridge University Press:  15 February 2011

S. Yegnasubramanian
Affiliation:
AT&T Bell Laboratories Princeton, New Jersey 08540
M. A. Shahid
Affiliation:
AT&T Bell Laboratories Princeton, New Jersey 08540
Get access

Abstract

This paper presents a TEM investigation of undoped, semi-insulating GaAs crystals grown by the VGF (vertical gradient freeze) technique for microstructure and defects characterization. Energy dispersive X-ray spectrometry (EDS) and selected area electron diffraction (SAD) were used to characterize for composition and lattice spacings, respectively. TEM images of dislocations decorated with precipitate particles are presented. The particles were found to be arsenic rich. Regions of fine particulates were identified and a Moire pattern analysis was carried out. The occurrence of such defects in the low dislocation density VGF GaAs of the present study suggests that these are material related and not necessarily dependent on the growth technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jordan, A. S., Caruso, R., von Neida, A. R. and Nielson, J. W., J. Appl. Phys., 52, 3131(1981).Google Scholar
[2] Lodge., E. A., Booker, G. R., Warwick, C. A. and Brown, G. T., Inst. Phys. Conf. Ser. No. 76, section 6, Microsc. Semicond. Mater. Conf. Oxford, 1985, pp. 217220.Google Scholar
[3] Tamura, A and Onuma, T, Japan J. Appl. Phys., 24 510, (1985)Google Scholar
[4] Miyazawa, S., Ishii, Y., IEEE Trans. Electronic Devices., 31(8) 1057 (1984).Google Scholar
[5] Yamazahi, H., Honda, T., Ishida, S., and Kawasald, Y., Appl. Phys. Lett., 45, 1109 (1984).Google Scholar
[6] Obokata, T et al, Japan J. Appl. Phys., 23, L602 (1985).Google Scholar
[7] Terahima, K., Katsumata, T., Orito, F., Kokata, T. and Fukuda, T., Japan J. Appl. Phys., 24, L325 (1983)Google Scholar
[8] Gault, W. A., Monberg, E. M. and Clemans, J. E., J. Crystal Growth, 74 491 (1986).Google Scholar
[9] Clemans, J. E., Gault, W. A. and Monberg, E. M., AT&T Tech. J. 65, 86 (1986).Google Scholar
[10] Monberg, E. M., Gault, W. A., Dominguez, F., Simchock, F., Chu, S. N. G., Stiles, C. M. J. Electrochem. Soc., 135, 500 (1988).Google Scholar
[11] Clemans, J. E., Ejim, T. I., Gault, W. A. and Monberg, E. M., AT&T Tech. J. 68.,29 (1989).Google Scholar
[12] Elliott, K. R., Holmes, D. E., Chen, R. T. and Kirkpatrick, C. G. Appl. Phys. Lett., 40, 898 (1982).Google Scholar
[13] Lagowski, J., Gatos, H. C., Parsey, Jr. J. M., Wada, K., Kaminski, M. and Walukiewicz, W., Appl. Phys. Lett., 40, 342 (1982).Google Scholar
[14] Ta, L. B., Hobgood, H. M., Rohatgi, A. and Thomas, R. N., J. Appl. Phys., 53, 5771 (1982).Google Scholar