Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-17T15:52:10.691Z Has data issue: false hasContentIssue false

Tailoring of Transition Metal Alkoxides Via complexation For The Synthesis of Hybrid Organic-Inorganic Sols and Gels

Published online by Cambridge University Press:  25 February 2011

C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
M. In
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
P. Toledano
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
P. Griesmar
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
Get access

Abstract

The chemical control of hydrolysis-condensation reactions of transition metal alkoxides can be performed through the modification of the transition metal coordination sphere by using strong complexing ligands (SCL). Complexing organic groups can be bonded to the transition metal oxide network in two different ways, as network modifiers or network formers. Different illustrations of the role of complexing ligands on Ti(IV) and Zr(IV) alkoxides are presented. As a network modifier, SCL act as termination agents for condensation reactions allowing a control of particle growth. The complexing ligands being located at the periphery of the oxo core open many opportunities for colloid surface protection. SCL carrying organofunctional groups which exhibit non linear optical (NLO) properties have also been used as probes to study sol-gel transformations. SCL functionalized with organic polymerizable functions act as network formers. Hybrid organic-inorganic copolymers intimately interpenetrated on a nanometer size scale were synthesized from zirconium oxo polymers chemically bonded to polymeric methacrylate chains via a complexing function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Brinker, C. J. and Scherrer, G., Sol-Gel Science, the Physics and Chemistry of Sol-gel Processing (Academic press, San-Diego, 1989).Google Scholar
2- Livage, J., Henry, M. and Sanchez, C., Progress in Solid State Chemistry 18, 259 (1988)Google Scholar
3-Sol-gel technology for thin films, fibers, preforms, electronics and especialty shapes” Edited by. Klein, L.C., (Noyes Pub,. 1988).Google Scholar
4- Schmidt, H., Scholze, H. and Kaiser, A., J. Non-cryst. Solids 63, 1 (1984).Google Scholar
5- Schmidt, H. and Seiferling, B., Mat. Res. Soc. Symp. Proc. 73 739 (1986).CrossRefGoogle Scholar
6- Wang, B., Wilkes, G. L., Smith, C. D. and McGrath, J. E., Polymer Communication Vol.32 13, 400 (1991).Google Scholar
7- Toussaere, E., Zyss, J., Griesmar, P. and Sanchez, C., NLO 3 (1991)Google Scholar
8- Dire, S., Babonneau, F., Sanchez, C. and Livage, J., Journal of Material Chemistry, 2,(2) 239 (1992).Google Scholar
9- Charbouillot, Y., Ravaine, D., Armand, M. and Poinsignon, C., J. Non-cryst. Solids, 103, 325 (1988).Google Scholar
10- Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-cryst. Solids 100, 650 (1988).CrossRefGoogle Scholar
11- Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978).Google Scholar
12- Mehrotra, R. C., Bohra, R. and Gaur, D. P., Metal β-diketonates and Allied Derivatives (Academic Press, London, 1978).Google Scholar
13- Ribot, F., Toledano, P. and Sanchez, C., Chem. Mater. 3, 759 (1991).Google Scholar
14- Livage, J. and Sanchez, C., J. Non-cryst. Solids (1992) (in press)Google Scholar
15- Smith, G. D., Caughlan, C. N. and Campbell, J. A., Inorg. Chem. 11(12) 2989 (1972).Google Scholar
16- Toledano, P., In, M. and Sanchez, G, C. R. Acad. Sci. Paris Serie II 313, 1247 (1991)Google Scholar
17- Toledano, P., In, M. and Sanchez, C., C. R. Acad. Sci. Paris Serie II 311 1161 (1990).Google Scholar
18- Sanchez, C., Ribot, F., Doeuff, S., in Inorganic and Organometallique Polymers with Special Properties. edited by Laine, R. M. (Nato, ASI series, Kluwer Academic Pub, vol 206, 1992) p 267.Google Scholar
19- Pope, M. T., in Heteropolv and Isopoly Oxometalates, Inorg. chem. concepts 8, (Springer Verlag, Berlin 1983).Google Scholar
20- Papet, P., LeBars, N., Baumard, J. F., Lecomte, A. and Dauger, A., J. Mater. Sci. 24, 3850 (1989).Google Scholar
21- Sanchez, C. and In, M., J. Non-cryst. Solids (1992), in press.Google Scholar
22- Debsikar, J. C., J. Non-Cryst. Solids 87, 343 (1986).CrossRefGoogle Scholar
23- Kundu, D. and Ganguli, D., J. Mater. Sci. Lett. 5, 293 (1986).Google Scholar
24- Lacourse, W. C. and Kim, S., in : Science of Ceramic Processing, eds Hench, L. L. and Ulrich, D. R. (Wiley, New-York, 1986) p.304.Google Scholar
25- Unuma, H., Tokoda, T., Siisuki, T. Y., Furusaki, T., Kodaira, K. and Hatsushida, T. J. Mater. Sci. Lett., 5, 1248 (1986).Google Scholar
26- Herron, N., Wang, Y. and Eckert, H., J. Am. Chem. Soc., 112, 1322 (1990)Google Scholar
27- Duonghong, D., Borgarello, E. and Grätzel, M., J. Am. Chem. Soc., 103, 4685 (1981).Google Scholar
28- Leaustic, A., Babonneau, F. and Livage, J., Chem. Mater, 1, 240 and 248 (1989).CrossRefGoogle Scholar
29- Avnir, D., Braun, S., and Ottolenghi, M., in Supramolecular Architecture in 2 and 3 dimensions. edited by Bein, T., ACS Symp. Ser.(1992)Google Scholar
30- Winter, R., Hua, D. W., Song, X., Mantulin, W., and Jonas, J., J. Phys. Chem, 94, No 6, 2706 (1990)Google Scholar
31- Audebert, P., Griesmar, P. and Sanchez, C., J Mater. Chem., 1, 4, 699 (1991).Google Scholar
32- Dunn, B. and Zink, J. I., J. Japan Ceram, Soc., (1992), in press.Google Scholar
33- Boulton, J. M., Thompson, J., Fox, H. H., Gorodisher, I., Teowee, G., Calvert, P. D., and Uhlmann, D.R., Mat. Res. Soc. Symp. 180, 987.(1990)Google Scholar
34- Griesmar, P., Sanchez, C., Pucetti, G., Ledoux, I. and Zyss, J., Molecular Engineering, 1, 3, 205 (1991).Google Scholar
35- McKierman, J. M., Pouxviel, J. C., Dunn, B., and Zink, J. I. J. Phys. Chem., 93, 2129 (1989).Google Scholar
36- Cabane, B., Dubois, M. and Duplessix, R., J. Physique, 48, 2131 (1987).Google Scholar
37- Suvorov, L. and Spasskii, S. S., Proc. Acad. Sci. USSR 127, 615 (1959).Google Scholar
38- Valente, I., Sanchez, C., Henry, M. and Livage, J., Industrie Céramique 836, 193, (1989).Google Scholar
39- Naβ, R. and Schmidt, H., in : Sol-Gel Optics, Edited by Mackenzie, J. D. and Ulrich, D. R. (Proc. SPIE 1328. Washington, 1990) p.258.Google Scholar
40- Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-cryst. Solids 89, 206 (1989).Google Scholar