Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T20:57:37.528Z Has data issue: false hasContentIssue false

Synthetic Routes to Perovskite Phase Mixed Metal Oxides

Published online by Cambridge University Press:  25 February 2011

Clive D. Chandler
Affiliation:
Department of Chemistry and Center for Micro-Engineered Ceramics University of New Mexico, Albuquerque, NM 87131
Mark J. Hampden-Smith
Affiliation:
Department of Chemistry and Center for Micro-Engineered Ceramics University of New Mexico, Albuquerque, NM 87131
Jeffrey Brinker
Affiliation:
Division 1846, Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We are developing strategies to form single-component precursors to perovskite phase mixed metal oxides where the stoichiometry of the precursor is fixed at the molecular level to be that of the final desired phase. These strategies ean be applied to the formation of perovskite phase thin films. Two such methods are described herein, relying on ester elimination and alcohol elimination reactions. We have found the reaction between lead(II) acetate and titanium(IV) isopropoxide in ethanol results in ligand redistribution at room temperature. Reactions between (β-diketonate)2M(OR)2 where M = Ti, Zr and Sn and lead(II) acetate do not result in any detectable ester elimination under the reaction conditions employed, and this approach was not successful. Alcohol elimination experiments have been explored as an alternative strategy using a bifunctional glycolate ligand. Lead carbonate reacted with glycolic acid to form the corresponding lead glycolate complex Pb(O2CCH2OH)2. This compound reacted with (β-diketonate)2M(OR)2, M = Ti and Sn, to eliminate two equivalents of alcohol and form the corresponding single component (β-diketonate)2M(OCH2CO2)2Pb complexes. These complexes start to thermally decompose at 150°C and loss of weight is complete by 450°C to yield a product whose weight loss corresponds to the formation of PbTiO3 for M = Ti. Bulk thermolysis of a sample of (dpm)2Ti(OCH2CO2)2Pb at 400°C resulted in formation of crystalline perovskite phase lead titanate together with PbO, massicot and α-PbO phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. West, A.R., in “Solid State Chemistry and Its Applications”, John Wiley and Sons, 1989.Google Scholar
2. Meyers, E.R.; Kingon, A.I. Eds., “Ferroelectric Thin Films”, Materials Research Society: Pittsburgh, PA, 1990, vol 200.Google Scholar
3. Vaarstra, B.A.; Huffman, J.C.; Strieb, W.E.; Caulton, K.G. Inorg. Chem. 1991, 30, 121.Google Scholar
4. Norman, J.A.T.; Pez, G.P. J. Chem. Soc., Chem. Commun. 1991, 971.Google Scholar
5. van der Sluis, P.; Spek, A.L.; Timmer, K.; Meinema, D.A. Acta Crystallogr. 1990, Sect. C., 46, 1741.Google Scholar
6. Timmer, K.; Spee, C.I.M.A.; Mackor, A.; Meinema, H.A. Euorpean Patent 0 405 634 A2, 1991.Google Scholar
7. Brinker, C. J.; Scherer, G. W. Sol-Gel Science, The Physics and Chemistry of Sol- Gel Processing, Academic Press, 1990.Google Scholar
8. Sanchez, C.; Livage, J. Nouv. J. Chem. 1990, 14, 513.Google Scholar
9. Livage, J.; Jolivet, J.P.; Tronc, E. J. Non-Cryst. Solids 1990, 121, 35.Google Scholar
10. Nabavi, M.; Doeuff, S.; Sanchez, C. J. Non-Cryst. Solids 1990, 121, 31.Google Scholar
11. Livage, J.; Henry, M.; Sanchez, C. Prog. Solid State Chem. 1988, 18, 259.Google Scholar
12. Bradley, D.C.; Thomas, I.M. J. Chem. Soc., A., 1959, 3404.Google Scholar
13. Sharma, H.K.; Kapoor, P.N. Polyhedron, 1988, 7, 1389.Google Scholar
14. Budd, K.D.; Dey, S.K.; Payne, D.A. Mat. Res. Soc., Symp. Proc. 1986, 73, 711.Google Scholar
15. Gurkovich, S.R.; Blum, J.B. Chapter 12 “Ultrastructure Processing of Ceramics Glasses and Composites”, Ed. Hench, L.L.; Ulrich, D.R. Wiley-Interscience, New York, 1984.Google Scholar
16. Gurkovich, S.R.; Blum, J.B. Ferroelectrics, 1985, 62, 189.Google Scholar
17. Gurkovich, S.R.; Blum, J.B. J. Mater. Sci., 1985, 20, 4479.Google Scholar
18. Dekleva, T.W.; Hayes, J.M.; Cross, L.E.; Geoffroy, G.L. J. Am. Cer. Soc., 1988, 71, C280.Google Scholar
19. Campion, J.F.; Payne, D.A.; Chae, H.K.; Maurin, J.K.; Wilson, S.R. Inorg. Chem., 1991, 30, 3245.Google Scholar
20. Hampden-Smith, M. J.; Smith, D. E.; Duesler, E. N. Inorg. Chem. 1989, 28, 3399.Google Scholar
21. Hampden-Smith, M. J.; William, D.S.; Rheingold, A. Inorganic Chemistry 1990, 29, 4076.Google Scholar
22. Hampden-Smith, M. J.; Wark, T. A.; Jones, L.C.; Brinker, C. J. Proc. Am. Cer. Soc., Symposium V, Cinncinatti, April 1991.Google Scholar
23. Gulliver, E. A.; Garvey, J. W.; Wark, T. A.; Hampden-Smith, M. J.; Datye, A. K. J. Amer. Cer. Soc. 1991, 74, 1091.Google Scholar
24. Wark, T. A.; Gulliver, E.A.; Hampden-Smith, M. J.; Rheingold, A. L. Inorg. Chem. 1990, 29, 4360.Google Scholar
25. Shriver, D.F.; Drezden, M.A., “The Manipulation of Air-Sensitive Compounds”, 2nd. Edn. Wiley-Interscience, New York, 1986, p78.Google Scholar
26. Harris, R.K. in Nuclear Magnetic Resonance Spectroscopy, Pitman, 1983.Google Scholar
27.a. Jones, R.W.; Fay, R.C. Inorg. Chem., 1973, 12, 2599:.b. Serpone, N.; Ishayek, R. Inorg. Chem., 1974, 13, 52, .c. Serpone, N.; Hersh, K.A. Inorg. Chem., 1974, 13, 2901, .d. Bickley, D.G.; Serpone, N., lnorg. Chem., 1974, 13, 2908, .e. Fay, R.C.; Lowry, R.N. Inorg. Chem., 1967, 6, 1512,. f. Serpone, N.; Fay, R.C.; Inorg. Chem., 1967, 6, 1835.Google Scholar
28. Chandler, C., Fallon, G.D., and West, B.O., J. Chem. Soc., Chem. Commun., 1990, 1063.Google Scholar
29. Hampden-Smith, M.J.; Wark, T.A.; Rheingold, A.L.; Huffman, J.C. Can. J. Chem., 1991, 69, 121.Google Scholar
30. Hampden-Smith, M.J.; Wark, T.A.; Brinker, C.J. Coord. Chem. Rev., Coord. Chem. Rev., 1991, 112, 81.Google Scholar
31. Chandler, C.D.; Hampden-Smith, M.J. and Duesler, E.N., Chem. Mat. submitted for publication.Google Scholar