Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T10:50:16.015Z Has data issue: false hasContentIssue false

Synthesis of sub-micron diamond films on Si(100) for thermal applications by BEN-MPCVD

Published online by Cambridge University Press:  01 February 2011

Samuel Saada
Affiliation:
samuel.saada@cea.fr, ., ., ., ., ., France
Jean-Charles Arnault
Affiliation:
jean-charles.arnault@cea.fr, CEA Saclay, DSM-DRECAM-SPCSI, Gif-sur-Yvette, F-91191, France
Licinio Rocha
Affiliation:
licinio.rocha@cea.fr, CEA, LIST (CEA-Recherche Technologique)/DETECS/SSTM/LTD, Gif-sur-Yvette, F-91191, France
Philippe Bergonzo
Affiliation:
philippe.bergonzo@cea.fr, CEA, LIST (CEA-Recherche Technologique)/DETECS/SSTM/LTD, Gif-sur-Yvette, F-91191, France
Get access

Abstract

Diamond is the ultimate candidate for heat-spreading applications because of its extreme thermal management properties. The synthesis of sub-micron diamond films is of great interest for SOD (Silicon On Diamond) wafer technology as well as for specific thermal device applications. The challenge here is the necessity to fabricate ultra-thin layers (down to 100 nm) that are continuous and homogeneous. We studied the Bias Enhanced Nucleation (BEN) pretreatment on microwave plasma reactors in order to have very high nucleation densities (> to 1011 cm−2) and optimised the following growth step of the process to obtain sub-micron covering diamond films. In this study, we focus on the bias step parameters to increase the nucleation rate and to limit the growth rate during the bias step. Then, we performed a growth step to control the morphology of the films. We obtained diamond films with thickness lower than 80 nm and with a 6 nm Root-Mean-Square roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Aleksov, A., Li, X., Govindaraju, N., Gobien, J.M., Wolter, S.D., Prater, J.T., Sitar, Z., Diamond and Related Materials 14, 308 (2005)10.1016/j.diamond.2005.01.019Google Scholar
2 Alesksov, A., Gobien, J.M., Li, X., Prater, J.T., Sitar, Z., Diamond and Related Materials 15, 248 (2006)10.1016/j.diamond.2005.09.012Google Scholar
3 Yugo, S., Kanai, T., Kimura, T., Muto, T., Appl. Phys. Lett. 58, 1036 (1991)Google Scholar
4 van der Drift, A., Philips Res. Rep. 22, 267 (1976)Google Scholar
5 Barrat, S., Guillemot, G., Patte, L., Bauer-Grosse, E., Diamond and Related Materials 8, 150 (1999)10.1016/S0925-9635(98)00302-1Google Scholar
6 Mortet, V., Elmazria, O., Nesladek, M., Assouar, M. B., Vanhoyland, G., D'Haen, J., D'Olieslaeger, M., Alnot, P., Applied Physics Letters 81, 1720 (2002)Google Scholar
7 Yoshikawa, H., Morel, C., Koga, Y., Diamond and Related Materials 10, 1588 (2001)10.1016/S0925-9635(01)00414-9Google Scholar
8 Huang, W.S., Tran, D.T., Asmussen, J., Grotjohn, T.A., Reinhard, D., Diamond and Related Materials 15, 341 (2006)10.1016/j.diamond.2005.09.027Google Scholar
9 Akhvlediani, R., Lior, I., Michaelson, Sh., Hoffman, A., Diamond and Related Materials 11, 545 (2002)10.1016/S0925-9635(01)00646-XGoogle Scholar
10 Sharda, T., Soga, T., Jimbo, T., Umeno, M., Diamond and Related Materials 10, 1592 (2001)10.1016/S0925-9635(01)00415-0Google Scholar