Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T17:42:31.162Z Has data issue: false hasContentIssue false

Synthesis of GaSr2Can−1CunO2n+3(n = 2 − 5) Prepared by Solid-State Reaction Method

Published online by Cambridge University Press:  15 February 2011

E. Chavira
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M., Apartado Postal 70–360, 04510, México D.F., MEXICO, chavira@servidor.unam.mx
E. Aguila
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M., Apartado Postal 70–360, 04510, México D.F., MEXICO, chavira@servidor.unam.mx
L. Baños
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M., Apartado Postal 70–360, 04510, México D.F., MEXICO, chavira@servidor.unam.mx
O. Navarro
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M., Apartado Postal 70–360, 04510, México D.F., MEXICO, chavira@servidor.unam.mx
Get access

Abstract

We present some experimental results of the family of compounds with a general formula GaSr2Can−1CunO2n+3(n = 2,3, 4, 5). This system has been synthesized using the solid-state reaction method at ambient pressure. We have found that the reaction temperature for these compounds is 930±3°C; the samples melt just above this temperature. The powder diffraction data were analyzed assuming a single-phase and the obtained structure is different to the one prepared at high pressure [1,2]. However, comparing the powder patterns we found that the compounds are isostructural to the Al — Sr — Ca — Cu — O system prepared at high pressure [3]. For n = 2,3,4 and 5 a shift of the (105) peak has been observed, which is due to the increases in the number of Ca and Cu — O2 planes in the crystalline structure. Notice that to obtain a single-phase for the above compounds, high pressure is not necessary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Takayama-Muromachi, E. and Isobe, M., Jpn. J. Appl. Phys. 33 (1994) L1399. Google Scholar
[2] Khasanova, N.R., Izumi, F., Takayama-Muromachi, E., and Hewat, A. W., Physica C 258 (1996) 227.Google Scholar
[3] Isobe, M., Kawashima, T., Kosuda, K., Matsui, Y., and Takayama-Muromachi, E. Physica C 234 (1994) 120.Google Scholar
[4] Bednorz, J. G. and Muller, K. A., Z. Phys. B 64 (1986) 189.Google Scholar
[5] Wu, M. H., Aschburn, J. R., Tory, C. J., Hor, P. H., Meng, R. C., Gao, L., Huang, Z. H., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58 (1987) 908.Google Scholar
[6] Michel, C., Provost, J., Deslandes, F., Raveau, B., Beille, J., Cabanel, R., Lejay, P., Sulpice, A., Tholerance, J. L., Tournier, R., Chevallier, B., Demazeau, G., and Etourneau, J., Z. Phys. B 68 (1987) 417.Google Scholar
[7] Parkin, S. S., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyer, R., Phys. Rev. Lett. 60 (1988) 2539.Google Scholar