Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T19:56:11.705Z Has data issue: false hasContentIssue false

Synthesis of (Alumino) Silicate Materials Using Organic Molecules and Self-Assembled Organic Aggregates as Structure-Directing Agents

Published online by Cambridge University Press:  21 February 2011

Mark E. Davis
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Cong-Yan Chen
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Sandra L. Burkett
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Raul F. Lobo
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Microporous zeolites can be synthesized using organic structure-directing molecules whose function is to organize inorganic species into particular topologies that then spontaneously self-assemble into the final crystalline materials. Extension of the zeolite assembly process to the use of organic molecular aggregates as structure-directing agents yields ordered mesoporous materials like MCM–41 and MCM–48. A unifying picture of the assembly processes ocurring in the syntheses of micro- and mesoporous materials is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Davis, M.E. and Lobo, R.F., Chem. Mater. 4, 756 (1992).Google Scholar
2 Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S., Nature 359, 710(1992).Google Scholar
3 Beek, J.S., Vartuli, M.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.O., Chu, C.T-W., Oison, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
4 Chen, C.Y., Li, H.X. and Davis, M.E., Microporous Mater. 2, 17 (1993).Google Scholar
5 Chen, C.Y., Burkett, S.L., Li, H.X. and Davis, M.E., Microporous Mater. 2, 27 (1993).Google Scholar
6 Kresge, C.T., Leonowicz, M.E., Roth, W.J., Schmitt, K.D. and Vartuli, J.C., U.S. Patent No. 5 198 203 (30 March 1993).Google Scholar
7 Burkett, S.L. and Davis, M.E., J. Phys. Chem. (in press).Google Scholar
8 Lobo, R.F., Pan, M., Chan, I., Li, H.X., Medrud, R.C., Zones, S.I., Crozier, P.A. and Davis, M.E., Science 262, 1543 (1993).Google Scholar
9 Lindblom, G., Lindman, B. and Mandell, L., J. Colloid Interface Sci. 42, 400 (1993).Google Scholar
10 Fontell, K., Colloid Polymer Sci. 268, 264 (1990).Google Scholar
11 Monnier, A., Schiith, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M. and Chmelka, B.F., Science 261, 1299(1993).Google Scholar
12 Spegt, F.F.A., Skoulious, A.E. and Luzzati, V., Acta Cryst. 14, 886 (1961).Google Scholar
13 Kresge, C.T., Leonowicz, M.E., Roth, W.J. and Vartuli, J.C., U.S. Patent No. 5 102 643 (7 April 1992).Google Scholar
14 Groenen, E.J.J., Emeis, C.A., van den Berg, J.P. and de Jong-Versloot, P.C., Zeolites 7, 474 (1987).Google Scholar
15 Charvolin, J. and Sadoc, J.F., J. Phys. 48, 1559 (1987).Google Scholar
16 Lobo, R.F., Zones, S.I. and Davis, M.E., J. Indus. Phenom. (in press).Google Scholar
17 Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. and Reeves, N.J., Science 261, 1286 (1993), and references therein.Google Scholar