Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T03:15:24.125Z Has data issue: false hasContentIssue false

Synthesis and Thermoelectric Properties of AgBi3S5

Published online by Cambridge University Press:  01 February 2011

Jun-Ho Kim
Affiliation:
Department of Chemistry
Daniel Bilc
Affiliation:
Department of Physics and Astronomy, Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Sim Loo
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
Jarrod Short
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
S. D. Mahanti
Affiliation:
Department of Physics and Astronomy, Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824.
Tim Hogan
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry
Get access

Abstract

The known mineral Pavonite AgBi3S5 shows a complex structure composed of NaCl type fragments but has not been studied from the thermoelectric point of view. We present initial results on the synthesis and themoelectric properties of synthetic AgBi3S5, which shows n-type metallic conductivity. In addition, the examination of the solid solutions AgSbxBi3-xS5 (x=0.3) is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. CRC Handbook of thermoelectric materials. Rowe, D.M.. Ed., CRC Press, Inc.: Boca Raton, FL, 1995 Google Scholar
2. Chung, D-.Y.; Hogan, T.; Brazis, P. W.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. Science 2000, 287, 10241027.Google Scholar
3. Chung, D.-Y.; Choi, K.–S; Iordanidis, L; Schindler, J.L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater., 1997, 9, 30603071.Google Scholar
4. Chung, D.-Y.; Jobic, S.; Hogan, T.; Kannewurf, C. R.; Brec, R.; Rouxel, J.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1997, 119, 25052515 Google Scholar
5. Mrotzek, A; Chung, D.–Y. Hogan, T; Kanatzidis, M. G. J. Mater. Chem., 2000, 10, 16671672 Google Scholar
6. Choi, K.–S.; Chung, D.–Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13 (3): 756764 Google Scholar
7. Iordanidis, L.; Brazis, P. W.; Kyratsi, T.; Ireland, J.; Lane, M.; Kannewurf, C. R. Chen, W.; Dyck, J. S.; Uher, C.; Ghelani, N. A.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13, 622633 Google Scholar
8. Hsu, K.–F.; Chung, D.–Y.; Lal, S.; Mrotzek, A.; Kyratsi, T.; Hogan, T.; Kanatzidis, M. G. J. Am. Chem. Soc., 2002, 124, 24102411.Google Scholar
9. McCarthy, T. J.; Ngeyi, S.-P.; Liao, J.-H.; DeGroot, D.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 331340 Google Scholar
10. McCarthy, T. J.; Tanzer, T. A.; Kanatzidis, M. G. J. Am. Chem. Soc. 1995, 117, 12941301.Google Scholar
11. a) McCarthy, T. J.; Tanzer, T. A.; Chen, L.H.; Iordanidis, L.; Hogan, T; Kannewurf, C. R.; Uher, C; Chen, B; Kanatzidis, M. G. Chem. Mater. 1996, 8, 14651474.Google Scholar
b) Chen, B; Uher, C; Iordanidis, L; Kanatzidis, M. G. Chem. Mater. 1997, 9, 16551658.Google Scholar
12. a) Wernick, J.H. American Mineralogist. 1960, 45, 591598 Google Scholar
b) Wernick, J.H. Journal of Materials Science. 1968, 3, 498501 Google Scholar
13. Mumme, W.G. Neues Jahrbuch fuer Mineralogie 1990, 193204 Google Scholar
14. Herbert, H.K.; Mumme, W.G. Neues Jahrbuch fuer Mineralogie. 1981, 6980 Google Scholar
15. Makovicky, E.; Mumme, W.G.; Watts, J.A. Can. Mineralogist 1977, 15, 339348 Google Scholar
16. Singh, D., Planewaves, Pseudopotentials, and the LAPW method (Kluwer Academic, Boston, 1994).Google Scholar
17. Hohenberg, P., and Kohn, W., Phys. Rev., 1964, 136, B864;Google Scholar
Kohn, W., and Sham, L., Phys. Rev., 1965, 140, A1133 Google Scholar
18. Kubelka-Munk function: α/S = (1-R)2/2R, where R is the reflectance at a given wavenumber, α is the absorption coefficient, and S is the scattering coefficient.Google Scholar