Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T00:47:36.110Z Has data issue: false hasContentIssue false

Synthesis and Structural Studies of Microporous Yttria-Stabilized Zirconia Ceramics

Published online by Cambridge University Press:  10 February 2011

R. Srinivasan
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, KY 40511
D. E. Sparks
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, KY 40511
D. R. Milburn
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, KY 40511
B. H. Davis
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, KY 40511
Get access

Abstract

Yttria-stabilized zirconia was prepared by (i) coprecipitation and (ii) alkoxide hydrolysis. The thermal and X-ray diffraction data were compared. The coprecipitation method yields microporous materials after calcination at 500°C for 4 hours with a narrow pore size distribution at a radius of 2–2.5 nm. Similar results were also seen with the alkoxide hydrolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ruff, O. and Ebert, F., Anorg, Z.. U. all. Chem., 180, 19 (1929).Google Scholar
2. Heuer, A. H., in “Advances in Ceramics,” Vol.3, Science and Technology of Zirconia, (Heuer, A. H. and Hobbs, L. W., eds.), Am. Ceram. Soc., Columbus, OH, 1981, pp 98115.Google Scholar
3. Srinivasan, R., Davis, B. H., Cavin, O. B. and Hubbard, C. R., J. Am. Ceram. Soc., 75, 1217 (1992).Google Scholar
4. Garvie, R. C., ”Zirconium Dioxide and Some of its Binary Systems,” in High Temperature Oxides. Part II, (Alper, A. M., ed.), Academic Press, pg. 117, 1970.Google Scholar
5. Heuer, A. H. and Ruhle, M. in “Advances in Ceramics,” (Claussen, N., Ruhle, M. and Heuer, A. H., eds.), Vol.12, Am. Ceram. Soc., Columbus, OH, 1984, pp 113.Google Scholar
6. Kissinger, H. E., J. Res. Nat. Bur. Stand., 57, 217 (1956); Anal. Chem., 29, 1702 (1957).Google Scholar
7. Scott, H. G., J. Mater. Sci., 10, 1527 (1975).Google Scholar
8. Harmsworth, P. D. and Stevens, R., J. Maier. Sci., 27, 616 (1992).Google Scholar
9. Ramanthan, S., Muraleedharan, R. V., Roy, S. K. and Nayar, P. K. K., J. Am. Ceram. Soc., 78, 429 (1995).Google Scholar
10. Srinivasan, R. and Davis, B. H., J. Colloid hIterface, 156, 400 (1993).Google Scholar
11. Srinivasan, R., Watkins, T. R., Hubbard, C. R. and Davis, B. H., Chem. Mater., 7, 725 (1995).Google Scholar