Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T22:07:58.653Z Has data issue: false hasContentIssue false

Synthesis and Properties of Crystalline Carbon Nitride Composite Superhard Coatings

Published online by Cambridge University Press:  15 February 2011

Yip-Wah Chung*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, ywchung@nwu.edu
Get access

Abstract

Multilayer carbon nitride/TiN coatings were synthesized using a dual-cathode dc magnetron sputtering system. Fully crystalline films can be obtained when the thickness of the carbon nitride component is on the order of one nm. There appears to be a strong correlation between the occurrence of strong TiN(111) texture and the hardness of these multilayer coatings, as controlled by target powers, nitrogen partial pressure and substrate bias. These coatings can be synthesized at near room temperatures, with smooth surface morphology and hardness in the range of 45–55 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
2. Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990).Google Scholar
3. Guo, Y. J. and Goddard, W. A., Chem. Phys. Lett. 237, 72 (1995)Google Scholar
4. Liu, A. Y. and Wentzcovitch, R. M., Phys. Rev. B 50, 10362 (1994).Google Scholar
5. Ruoff, R. S. and Ruoff, A. L., Nature 350, 663 (1991).Google Scholar
6. Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
7. Narayan, J., Reddy, J., Biunno, N., Kanetkar, S. M., Tiwari, P., and Parikh, N., Mater. Sci. Eng. B 26, 49 (1994).Google Scholar
8. Ren, Z. M., Du, Y. C., Ying, Z. F., Qiu, Y. X., Xiong, X. X., Wu, J. D. and Li, F. M., Appl. Phy. Lett. 65, 1361 (1994).Google Scholar
9. Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).Google Scholar
10. Yen, T.-Y. and Chou, C.-P., Solid State Comm. 95, 281 (1995).Google Scholar
11. Stafström, H. Sjöström, S., Boman, M., and Sundgren, J.-E., Phys. Rev. Lett. 75, 1336 (1995).Google Scholar
12. Pharr, G. M. and Oliver, W. C., MRS Bulletin 17, 28 (1992).Google Scholar
13. Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalais, J. W., Phys. Rev. Lett. 73, 118 (1994).Google Scholar
14. Rossi, F., Andre, B., Veen, A., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubard, K., J. Mater. Res. 9, 2440 (1994).Google Scholar
15. Li, D., Chung, Y. W., Wong, M. S., and Sproul, W. D., J. Appl. Phys. 74, 219 (1993).Google Scholar
16. Li, D., Chung, Y.W., Lopez, S., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A 13, 1063 (1995).Google Scholar
17. Li, D., Cutiongco, E., Chung, Y. W., Wong, M. S., and Sproul, W. D., Surf. Coat. Technol. 68/69, 611 (1994).Google Scholar
18. Chu, X., Wong, M. S., Sproul, W. D., Rohde, S. L. and Barnett, S. A., J. Vac. Sci. Technol A10, 1604 (1992).Google Scholar
19. Chu, X., Wong, M. S., Sproul, W. D., and Barnett, S. A., Surf. Coat. Technol. 57, 13 (1993).Google Scholar
20. Li, D., Wong, M.S., Chung, Y.W., Cheng, S.C., Chu, X., Lin, X.W., Dravid, V., and Sproul, W.D., Appl. Phys. Lett. 67, 203 (1995).Google Scholar
21. Sproul, W. D., Rudnik, P. J., Graham, M. E., and Rohde, S. L., Surf. Coat. Technol. 43/44, 270 (1990).Google Scholar
22. Chu, X. and Barnett, S. A., J. Appl. Phys. 77, 4403 (1995)Google Scholar
23. Sundgren, J.-E., Thin Solid Films 128, 21 (1985).Google Scholar