Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T01:41:16.635Z Has data issue: false hasContentIssue false

Synthesis and luminescence properties of colloidal lanthanide doped YVO4

Published online by Cambridge University Press:  21 March 2011

Arnaud Huignard
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau, France
Thierry Gacoin
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau, France
Frédéric Chaput
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau, France
Jean-Pierre Boilot
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau, France
Patrick Aschehoug
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide, UMR CNRS 7574, ENSCP, 75005 Paris, France
Bruno Viana
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide, UMR CNRS 7574, ENSCP, 75005 Paris, France
Get access

Abstract

Aqueous colloidal solutions of well dispersed YVO4:Ln (Ln = Eu, Nd) nanoparticles are synthesized through precipitation reactions at room temperature. In the case of YVO4:Eu, a luminescence quantum yield of 15% is found, which is not as high as in the bulk due to the existence of residual crystalline defects and nonradiative relaxations from the hydroxylated surface. Appropriate hydrothermal annealing and deuteration of the surface allow to rise the yield up to 38%. Incorporation of the nanocrystals into a transparent silica matrix is achieved through preliminary coating of the particles with a functionnalized silicon alkoxide and further dispersion into a sol-gel precursor solution. Such sol-gel materials doped with YVO4:Nd nanocrystals are transparent and exhibit the typical emission at 1.06 μm of the Nd3+ ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peng, X., Schlamp, M. C., Kadavanich, A. V. and Alivisatos, A. P. J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
2. Counio, G., Esnouf, S., Gacoin, T. and Boilot, J-P., J. Phys. Chem B 102, 5257 (1998).Google Scholar
3. Blasse, G. and Grabmeier, B. C., Luminescent Materials (Springer Verlag, 1994).Google Scholar
4. Riwotzki, K. and Haase, M., J. Phys. Chem B 102, 10129 (1998), K. Riwotzki, H. Meissamy, H. Schnablegger, A. Kornowski and M. Haase, Angew. Chem. Int. Ed. 40(3), 573 (2001).Google Scholar
5. Huignard, A., Gacoin, T. and Boilot, J. P., Chem. Mat. 12(4), 1090 (2000).Google Scholar
6. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. and Alivisatos, A. P., Science 281, 2013 (1998).Google Scholar
7. Gacoin, T., Malier, L. and Boilot, J-P., Chem. Mat. 9(7), 1502 (1997).Google Scholar
8. Philipse, A. P., Nechifor, A. and Pathmamanoharan, C., Langmuir 10, 4451 (1991).Google Scholar
9. Boilot, J-P., Biteau, J., Brun, A., Chaput, F., Morais, T. Dantas de, Darracq, B., Gacoin, T., Lahlil, K., Lehn, J-M., Levy, Y., Malier, L., Hybrid Materials, Mat. Res. Soc. Symp. Proc. 519, 227 (1998)Google Scholar
10. , Schwarz, Z. Anorg. Allg. Chem. 322, 143 (1963).Google Scholar
11. , Shannon and , Prewitt, Acta Cryst. A32, 785 (1976).Google Scholar
12. Ropp, R. C., J. Electrochem. Soc. Solid State Science. 115(9), 940 (1968).Google Scholar
13. Blasse, G., Prog. Solid State Chem. 18, 119 (1988).Google Scholar
14. Guillot-Noël, O., Viana, B., Aka, G., Gourier, D., Kahn-Harari, A. and Vivien, D., J. Lum. 72–74, 195 (1997).Google Scholar
15. Guillot-Noel, O., Viana, B., Bellamy, B., Gourier, D., Zogo-MBoulou, G.B., Jandl, S., Optical Materials 13(4), 427 (2000).Google Scholar
16. Stein, G. and Würzberg, E., J. Chem. Phys. 62(1), 208 (1975).Google Scholar