Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T00:51:35.766Z Has data issue: false hasContentIssue false

Synthesis and Lithium Intercalation Properties of a Layered Lithiated Manganese Oxide with Rancieite Type

Published online by Cambridge University Press:  16 February 2011

F. Leroux
Affiliation:
Laboratoire de Chimie des Solides, Institut des Matériaux de Nantes, 2, rue de la Houssiniére - 44072 Nantes Cedex 03, France
D. Guyomard
Affiliation:
Laboratoire de Chimie des Solides, Institut des Matériaux de Nantes, 2, rue de la Houssiniére - 44072 Nantes Cedex 03, France
Y. Piffard
Affiliation:
Laboratoire de Chimie des Solides, Institut des Matériaux de Nantes, 2, rue de la Houssiniére - 44072 Nantes Cedex 03, France
Get access

Abstract

The 2D lithiated manganese oxide with Rancieite-type structure (lithium phyllomanganate), synthesized via a soft chemistry route (T≤60ºC) is hydrated at room temperature and can be dehydrated progressively by a thermal treatment. This compound and a series of samples obtained after annealing at different temperatures were characterized and studied for their electrochemical lithium intercalation properties. They are poorly crystallized, with however the advantage of a manganese oxidation state very close to 4, a mustto get high specific capacity. Their chemical characterization was achieved after gathering results obtained from complementary techniques such as AAS, redox titration, TGA and XPS measurements. Special care was taken for the chemical characterization of electrode compositions effectively used in the electrochemical cells.

Electrochemical lithium intercalation was systematically studied for the series of samples, when starting in charge or in discharge after assembly of the Li battery. The electrochemical behavior is discussed in relation with the manganese average oxidation state and the interlayer water content. Materials of the series showing the larger specific capacities were further examined on the application point of view, for their reversibility, cyclability and high rate capability upon Li intercalation.

This work shows that the anhydrous material which is obtained at 300ºC, with the composition Li0.42MnIII0.20MnIV0.8002.11, is a promising rechargeable layered manganese dioxide material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Wittingham, M. S., Prog. Solid State Chem. 12, 41 (1978).Google Scholar
2 Desilvestro, J. and Haas, O., J. Electrochem. Soc. 137, 5C (1990).Google Scholar
3 Delmas, C., Lithium Batteries, Ed. Pistoia, G. (Elsevier, Industrial Chemistry Library, 1994) Vol.5, p. 457.Google Scholar
4 Golden, D. C., Dixon, J. B. and Chen, C. C., Clays and Clays Minerals, 34, 511 (1986).Google Scholar
5 Paterson, E., Bunch, J. L. and Clark, D. R., Clay Minerals, 21, 949 (1986).Google Scholar
6 Strobel, p. and Charenton, J-C., Rev. Chirn. Min. 23, 125 (1986).Google Scholar
7 Strobel, P., Charenton, J-C. and Lenglet, M., Rev. Chim. Min. 24, 199 (1987).Google Scholar
8 Ohzuku, T., Fukuda, H. and Hirai, T., Chemistry Express 2, 543 (1987).Google Scholar
9 Lubin, F., Lecerf, A., Broussely, M. and Labat, J., J. Power Sources 34, 161 (1991).Google Scholar
10 Rossow, M. H. and Thackeray, M. M., Mat. Res. Bull. 26, 463 (1991).Google Scholar
11 Rossow, M. H., Liles, D. C. and Thackeray, M. M., J. Solid State Chem., 104, 464 (1993).Google Scholar
12 Bach, S., Pereira-Ramos, J-P., Baffier, N. and Messina, R., Electrochim. Acta 36, 1595 (1991).Google Scholar
13 Goff, P. Le, Baffier, N., Bach, S., Pereira-Ramos, J-P. and Messina, R., Solid State Ionics 61, 309 (1993).Google Scholar
14 Capitaine, F., Gravereau, P. and Delmas, C., GFECI meeting (Montpellier, France, March 1994), Abstract p.57.Google Scholar
15 Ohzuku, T., Ueda, A. and Hirai, T., Chemistry Express 7, 193 (1992).Google Scholar
16 Reimers, J. N., Fuller, E.W., Rossen, E. and Dahn, J. R., J. Electrochem. Soc. 140, 3396 (1993).Google Scholar
17 Gummow, R. J., Liles, D.C. and Thackeray, M. M., Mat. Res. Bull. 28, 1249 (1993).Google Scholar
18 Davidson, I. J., MacMillan, R. S., and Murray, J. J., Proceedings of 7th International Meeting of Lithium Batteries (Boston, May 1994) Abstract II.B-26, p. 586, to be published.Google Scholar
19 Strobel, P., Solid State Ionics III, MRS Symposium Proceedings Vol. 293, p. 63 (1993).Google Scholar
20 Strobel, P. and Mouget, C., Mat. Res. Bull. 28, 93 (1993).Google Scholar
21 Cras, F. Le, Strobel, P. and Anne, M., Proceedings of 7th International Meeting of Lithium Batteries (Boston, May 1994) Abstract II-A-40, p. 480, to be published.Google Scholar
22 Richmond, W. E., Fleischer, M. and Mrose, M. E., Bull. Soc. fr. Minéral. Cristallogr. 92, 191 (1969).Google Scholar
23 Leroux, F., Guyomard, D. and Piffard, Y., Solid State Ionics, to be published.Google Scholar
24 Leroux, F., Guyomard, D. and Piffard, Y., Solid State Ionics, to be published.Google Scholar
25 Tsuji, M., Komarneni, S., Tamaura, Y. and Abe, M., Mat. Res. Bull. 27, 741 (1992).Google Scholar
26 Guyomard, D. and Tarascon, J-M., J. Electrochem. Soc. 140, 3071 (1993).Google Scholar
27 Guyomard, D. and Tarascon, J-M., Solid State Ionics 69, 222 (1994).Google Scholar
28 Giovanoli, R., Stähli, E. and Feitknecht, W., Helv. Chem. Acta 53, 209 (1970).Google Scholar
29 Goff, P. Le, Baffier, N., Bach, S. and Pereira-Ramos, J-P., J. Mater. Chem. 4, 875 (1994).Google Scholar
30 Vetter, K. J. and Jaeger, N., Electrochimica Acta 11, 401 (1966).Google Scholar
31 Shen, X. M. and Clearfield, A., J. Solid State Chem. 64, 270 (1986).Google Scholar
32 Oku, M., Hirokawa, K. and Ikeda, S., J. Electron Spectrosc. 7, 465 (1975).Google Scholar
33 Baltanas, M. A., Katzer, J. R. and Stiles, A. B., Acta Chim. Acad. Sci. Hung. 124, 341 (1987).Google Scholar
34 Zaki, M. I. and Kappenstein, C., Zeitschrift für Physikalishe Chemie 176, 97 (1992).Google Scholar
35 Richard, M. N., Fuller, E. W. and Dahn, J. R., Solid State Ionics 73, 81 (1994).Google Scholar
36 Basu, S. and Worell, W. L., Fast Ion Transport in Solids, edited by Vashita, P., Mundy, J. N. and Shenoy, G. K. (Elsevier North-Holland, Amsterdam 1979), p. 149.Google Scholar