Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-22T01:59:50.688Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Vanadium Oxide Gels from Alkoxy-Vanadate Precursors

Published online by Cambridge University Press:  25 February 2011

C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France.
M. Nabavi
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France.
F. Taulelle
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France.
Get access

Abstract

Vanadium oxide gels are synthesized through vanadium oxo-alkoxide hydrolysis condensation processes. Different precursors and hydrolysis conditions lead to different sorts of gels. V0(0Amt)3 hydrolyzed with a large excess of water results in red jammy gels with a layered structure. They exhibit electronic and ionic behavior comparable to vanadium pentoxide gels from inorganic precursors. Hydrolysis of VO(OPrn)3 in an alcoholic medium, leads to orange transparent monolithic gels. They have a highly branched polymeric structure. Controlled hydrolysis of vanadium oxo-alkoxide precursors has the further advantage of giving good adherent thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sanchez, C., Livage, J., Henry, M., Babonneau, F., J.N.C.S., to be published.Google Scholar
2. Ultrastructure Processing of Ceramics, Glasses and Composites, Hench, L.L. and Ulrich, D.R. Eds., Wiley, New-York (1984).Google Scholar
3. Ultrastructure Processing of Advanced Ceramics, Mackenzie, J.D. and Ulrich, D.R., Eds., Wiley, New-York (1988).Google Scholar
4. Better Ceramics Through Chemistry, Brinker, C.J., Clark, D.E. and Ulrich, D.R. Eds., North Holland, New-York (1984).Google Scholar
5. Better Ceramics Through Chemistry II, Brinker, C.J., Clark, D.E. and Ulrich, D.R. Eds., M.R.S. Pittsburg (1986).Google Scholar
6. Livage, J., Studies in Inorganic Chemistry, Proc. of the 2d European Conf. on Solid State Chemistry, 17 (1982).Google Scholar
7. Ditte, A., Hebd, C.R.. Seances Acad. Sci., 101, 698 (1885).Google Scholar
8. Gharbi, N., Sanchez, C., Livage, J., Lemerle, J., Nejem, L., Lefebvre, J., Inorg. Chem. 21, 2758 (1982).CrossRefGoogle Scholar
9. Gharbi, N., R'Kha, C., Ballutaud, D., Michaud, M., Livage, J., Audiére, J.P., Schiffmacher, G., J. Non Cryst. Sol., 46, 247 (1981).CrossRefGoogle Scholar
10. Muller, E., Z. Chem. Ind. Kolloides, 8, 302 (1911).CrossRefGoogle Scholar
11. Barboux, P., Baffier, N., Morineau, R., Livage, J., Solid State Protonic Conductors III. Odense University Press, 173 (1985).Google Scholar
12. Livage, J., Mat. Res. Soc. Symp. Proc, 32, 125 (1984).CrossRefGoogle Scholar
13. Orlov, N.F. and Voronkov, M.G., Bull. Acad. Sci., USSR, cl. Sci. Chim., 933 (1959).Google Scholar
14. Mittal, R.K., Mehrotra, R. C., Z. Anorg. Alig. Chem., 327, 311 (1964).CrossRefGoogle Scholar
15. Bradley, D.C., Mehrotra, R.C., Wardlaw, W., J. Chem. Soc. (London), 1634 (1958).Google Scholar
16. Caughlan, C.N., Smith, H.M., Watenbaugh, K., Inorg. Chem, 5, 12, 2131 (1966).CrossRefGoogle Scholar
17. Lachowicz, V.A., Thiele, K.H., Z. Anorg. Alig. Chem., 434, 271 (1977).CrossRefGoogle Scholar
18. Lachowicz, V.A., Höbold, W., Thiele, K.H., Z. Anorg. Alig. Chem., 418, 65 (1975).CrossRefGoogle Scholar
19. Paulsen, K., Rehder, D., Thoennes, D., Z. Naturforsh. 33a, 834 (1978).CrossRefGoogle Scholar
20. Preuss, F., Ogger, L., Z. Naturforsch, 37b, 957 (1982).CrossRefGoogle Scholar
21. Rehder, D., Bull. Magn. Reson., 4, 33 (1982).Google Scholar
22. Harris, R.K. in Nuclear Magnetic Resonance Spectroscopy, Pitman, (1983).Google Scholar
23. Wong, J., Lytle, F.W., Messmer, R.P., Maylotte, D.H., Physical Review B, 30, 10 (1984).Google Scholar
24. Teo, B.K. in EXAFS : Basic Principles and data analysis, Springer Verlag, (1986).CrossRefGoogle Scholar
25. Cartier, C., Verdaguer, M., Menage, S., Girerd, J.J., Tuchaghes, J.P., Mabad, B., J. Physique, C8, 12, 47, 623 (1986).Google Scholar
26. Harrison, A.T., Howarth, O.W., J. Chem. Soc. DALTON-TRANS., 1953 (1985).CrossRefGoogle Scholar
27. Baffier, N., Aldebert, P., Livage, J., Haesslin, H.W., Submitted to J.N.C.S.Google Scholar
28. Kamiyama, T., Itoh, T. and Susuki, K., J.N.C.S., to be published.Google Scholar
29. Le Coustumer, L.R., Taouk, B., Le Meur, M., Payen, E., Guelton, M., Grimblot, J., J. Phy. Chem., 92, 1230 (1988).CrossRefGoogle Scholar
30. Livage, J., Henry, M. and Sanchez, C., Progress in Solid State Chemistry (in press).Google Scholar
31. Cabane, B., Dubois, M., Duplessix, R., J. Physique, 48, 2131 (1987).CrossRefGoogle Scholar