Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T22:16:19.143Z Has data issue: false hasContentIssue false

Syntactic Intergrowth Problems with Bcsco and Fabrication Difficulties Therefrom

Published online by Cambridge University Press:  25 February 2011

P.E.D. Morgan
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
J. J. Ratto
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
R. M. Housley
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
J. R. Porter
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
Get access

Extract

Bismuth containing oxide superconductors were first encountered in the BaPb1−xBxO3 perovskites [1]. In the the YBa2Cu3Ox family, bismuth was a possible substitute for yttrium and was attempted by us many months ago (and undoubtedly by many other groups) with the result that, under the necessary oxidizing conditions, BaBiO3 formed as a separate phase. Attempts to substitute bismuth into the La2−xSrxCuO4 family were reported [2], with the intriguing result of a 42K superconductor with Tc higher than the previous 38K high for the family. A second paper [3] discussed the new compound “Bi2Sr2Cu7+δ, a = 5.32Å, b = 26.6Å, C = 48.8Å”, with TC of 7K to 22K; this was confirmed, but C = 24.4Å was found [4], and it is now clear that this compound is ideally Bi2Sr2CuO6+δ. A higher Tc than in BaPb1−xBixO3 was next detected in the Ba-K-Bi-O system [5]. Work at the Japanese National Research Institute of Metals [6] then disclosed T_ of as high as ∼ 105K in the Bi-Ca-Sr-Cu-O (BCSCO) system; both Ca and Sr must be present to produce these higher values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sleight, A.W., Gillson, J.L. and Bierstedt, P.E., Solid State Comm. 17, 27 (1975).CrossRefGoogle Scholar
2. Michel, C., Provost, J., Deslandes, F., Raveau, B., Beule, J., Cabanel, R., Lejay, P., Sulpice, A., Tholence, J.L., Tournier, R., Chevallier, B., Demazeau, G. and Etourneau, J., Z. Phys. B68, 417 (1987).Google Scholar
3. Michel, C., Hervieu, M., Borei, M.M., Grandin, A., Deslandes, F., Provost, J. and Raveau, B., Z. Phys. B68, 421 (1987).Google Scholar
4. Akimitsu, J., Yamazaki, A., Sawa, H. and Fuyika, H., Jap. J. Appl. Phys. 26, L2080 (1987).Google Scholar
5. Mattheis, L.F., György, E.M. and Johnson, D.W. Jr, Phys. Rev. B37, 3745 (1988).Google Scholar
6. Maeda, H., Tanaka, Y., Fukutomi, M. and Asano, T., Jap. J. Appl. Phys. 27, L209 (1988).Google Scholar
7. Subramanian, M.A., Torardi, C.C., Calabrese, J.C., Gopalakrishnan, J., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U. and Sleight, A.W., Science 239, 1015(1988).Google Scholar
8. Hazen, R.M., Prewitt, C.T., Angel, R.J., Ross, N.L., Finger, L.W., Hadidiacos, C.G., Veblen, D.R., Heaney, P.J., Hor, P.H., Meng, R.L., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y., Huang, Z.J., Gao, L., Bechtold, J. and Chu, C.W., Phys. Rev. Lett. 60, 1174 (1988).Google Scholar
9. Shaw, T.M., Shivashankar, S.A., La Placa, S.A., Cuomo, J.J., McGuire, T.R., Roy, R.A., Kelleher, K.H. and Yee, D.S., in press, Phys. Rev. B.Google Scholar
10. Veblen, D.R., Heaney, P.J., Angel, R.J., Finger, L.W., Hazen, R.M., Prewitt, C.T., Ross, N.L., Chu, C.W., Hor, P.H. and Meng, R.L., Nature 332, 332 (1988).Google Scholar
11. Harker, A.B., Kobrin, P.H., Morgan, P.E.D., DeNatale, J.F., Ratto, J.J., Gergis, I.S. and Howitt, D.G., submitted 2/26/88, Appl. Phys. Lett.Google Scholar
12. Ikeda, S., Ichinose, H., Kimura, T., Matsumoto, T., Maeda, H., Ishida, Y. and Ogawa, K., submitted 3/14/88, Appl. J. Appl. Phys.Google Scholar
13. Landuyt, J.V. and Amelinckx, S., Am. Min. 60, 351 (1975).Google Scholar
14. Donnay, G. and Donnay, J.D.H., Am. Min. 38, 932 (1953).Google Scholar
15. Morgan, P.E.D., Mat. Res. Bull. 11, 233 (1976).Google Scholar
16. Morgan, P.E.D., Mat. Res. Bull. 19, 369 (1984).Google Scholar
17. Matsui, Y., Maeda, H., Tanaka, Y. and Horiuchi, S., Jap. J. Appl. Phys. 27, L372 (1988).Google Scholar
18. Wells, A.F., Structural Inorganic Chemistry, Clarendon Press, Oxford (1975).Google Scholar
19. Subramanian, M.A., Calabrese, J.C., Torardi, C.C., Gopalakrishnan, J., Askew, T.R., Flippen, R.B., Morrissey, K.J., Chowdhry, U. and Sleight, A.W., in press, Nature.Google Scholar
20. Torardi, C.C., Subramanian, M.A., Calabrese, J.C., Gopalakrishnan, J., McCarron, E.M., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U. and Sleight, A.W., in press, Phys. Rev. B.Google Scholar
21. Torardi, C.C., Subramanian, M.A., Calabrese, J.C., Gopalakrishnan, J., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U. and Sleight, A.W. in press, Science.Google Scholar
22. Preliminary results presented by several groups in the superconductor sessions at this MRS meeting.Google Scholar