Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-11T22:51:17.175Z Has data issue: false hasContentIssue false

Susceptor and Proximity Rapid Thermal Annealing of InP

Published online by Cambridge University Press:  25 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Geva
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breinigsville, PA 18301
Get access

Abstract

An intensive comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology, was carried out. The superiority of annealing within a susccptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750°C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Katz, A., Dautremont-Smith, W. C., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Zilko, J. L. and Lahav, A., J. Appl. Phys. 65, 4319 (1989).CrossRefGoogle Scholar
[2] Katz, A., Dautremont-Smith, W. C., Chu, S. N. G., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Napholtz, S. G., Zilko, J. L., and Lahav, A., Appl. Phys. Lett, 54, 2306 (1989).CrossRefGoogle Scholar
[3] Lahav, A., Lapinsky, R. L. and Henry, T. C., J. Electrochem. Soc. 136, 1096 (1989).CrossRefGoogle Scholar
[4] Pearton, S. J. and Caruso, R., J. Appl. Phys. 66, 663 (1989).CrossRefGoogle Scholar
[5] Katz, A., Thomas, P. M., Chu, S. N. G., Lee, J. W. and Dautremont-Smith, W. C., J. Appl. Phys. 66, 2056 (1989).CrossRefGoogle Scholar
[6] Nishitsuji, M. and Hasegawa, F., Jpn. J. Appl. Phys. 28, L895 (1985).CrossRefGoogle Scholar
[7] Kanber, H., Cipolli, R. J., Henderson, W. B. And Whelan, J. M., J. Appl. Phys. 57, 4732 (1985).CrossRefGoogle Scholar
[8] Kank, C. H., Kondo, K., Lagowski, J. and Gatos, H. C., J. Electrochem. Soc. 134, 1261 (1987).CrossRefGoogle Scholar
[9] Farley, C. W. and Streetman, B. G., J. Electron. Mater. 13, 401 (1984).CrossRefGoogle Scholar
[10] Valco, G. J. and Kapoor, V. J., J. Electrochem. Soc. 134, 569 (1987).CrossRefGoogle Scholar
[11] Jackson, T. N., DeGelormo, J. F. and Pepper, G., Proc. Mat. Res. Soc. Symp. 144, 403 (1989).CrossRefGoogle Scholar
[12] Molnar, B., Appl. Phys. Lett. 36, 927 (1980).CrossRefGoogle Scholar
[13] Armiento, C. A. and Prince, F. C., Appl. Phys. Lett. 48, 1623 (1986).CrossRefGoogle Scholar
[14] Katz, A., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 56, 1028 (1990).CrossRefGoogle Scholar
[15] Katz, A. and Pearton, S. J., J. Vac. Sci. Technol. (To be published).Google Scholar
[16] Pearton, S. J., Gibson, J. M., Jacobson, D. C., Poate, J. M., Williams, J. S. and Boerma, D. O., Proc. Mat. Res. Soc. Symp. 52, 198 (1986).Google Scholar
[17] Katz, A., Pearton, S. J. and Soler, M., J. Appl. Phys. (To be published).Google Scholar
[18] Katz, A., Thomas, P. M., Chu, S. N. G., Dautremont-Smith, W. C., Sobers, R. G. and Napholtz, S. G., J. Appl. Phys. 67, 884 (1990).CrossRefGoogle Scholar
[19] Pearton, S. J., Katz, A. and Geva, M., J. Appl. Phys. (To be published).Google Scholar
[20] Katz, A., Albin, M. and Komem, Y., J. Vac. Sci. Technol. B 7, 130 (1989).CrossRefGoogle Scholar