Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T11:36:20.220Z Has data issue: false hasContentIssue false

Surface-Passivant Dependence of Dynamic Charging Effect in Alkanethiolate-Passivated Au Nanoparticles on Graphite Substrates Studied by Photoelectron Spectroscopy

Published online by Cambridge University Press:  26 February 2011

Akinori Tanaka
Affiliation:
a-tanaka@mech.kobe-u.ac.jp, Kobe University, Department of Mechanical Engineering, 1-1 Rokkodai, Nada-ku, Kobe, N/A, 657-8501, Japan, +81-78-803-6123, +81-78-803-6123
Masaki Imamura
Affiliation:
032d811n@y05.kobe-u.ac.jp
Hidehiro Yasuda
Affiliation:
yasuda@mech.kobe-u.ac.jp
Get access

Abstract

We have performed a photoemission study of various alkanethiolate- (AT-) passivated Au nanoparticles with diameter of 4 nm on the highly oriented pyrolytic graphite (HOPG) substrates. It is found that the photoemission spectra in the vicinity of Fermi level of all the present AT-passivated Au nanoparticles on the HOPG substrates do not exhibit the usual metallic Fermi edge, with the steep slope being away from the Fermi level. Moreover, it is found that these spectral features depend on the surface-passivant molecules. We attribute the unusual spectral features in the vicinity of Fermi level to the dynamic charging effect in photoemission final-state, indicative of the interaction between the nanoparticle and substrate through the surface-passivants on a femtosecond time scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Viegers, M. P. A. and Trooster, J. M., Phys. Rev. B 15, 72 (1977).Google Scholar
2. Medeiros-Ribeiro, G., Ohlberg, D. A. A., Williams, R. S., and Heath, J. R., Phys. Rev. B 59, 1633 (1999).Google Scholar
3. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801 (1994).Google Scholar
4. Alvarez, M. M., Khoury, J. T., Schaaff, T. G., Shafigullin, M., Vezmar, I., and Whetten, R. L., Chem. Phys. Lett. 266, 91 (1997).Google Scholar
5. Taleb, A., Russier, V., Courty, A., and Pileni, M. P., Phys. Rev. B 59, 13350 (1999).Google Scholar
6. Luedtke, W. D. and Landman, U., J. Phys. Chem. 100, 13323 (1996).Google Scholar
7. Lin, X. M., Sorensen, C. M., and Klabunde, K. J., J. Nanoparticle Res. 2, 157 (2000).Google Scholar
8. Seidl, M., Meiwes-Broer, K.-H., and Brack, M., J. Chem. Phys. 95, 1295 (1991).Google Scholar
9. Mason, M. G., Phys. Rev. B 27, 748 (1983).Google Scholar
10. Hovel, H., Grimm, B., Pollmann, M., and Reihl, B., Phys. Rev. Lett. 81, 4608 (1998).Google Scholar
11. Tanaka, A., Takeda, Y., Nagasawa, T., and Sato, S., Phys. Rev. B 67, 033101 (2003).Google Scholar