Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T02:52:18.279Z Has data issue: false hasContentIssue false

Surface Stabilities of n-type GaN Dependent on Electrolyte under Photoelectrochemical Reactions

Published online by Cambridge University Press:  13 February 2014

Kayo Koike
Affiliation:
School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 JAPAN.
Akihiro Nakamura
Affiliation:
School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 JAPAN.
Masakazu Sugiyama
Affiliation:
School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 JAPAN.
Yoshiaki Nakano
Affiliation:
School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 JAPAN.
Katsushi Fujii
Affiliation:
Global Solar plus Initiative (GS+I), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 JAPAN.
Get access

Abstract

The n-type GaN has stability problem of the surface anodic corrosion during the photoelectrochemical reaction for H2 generation. The photoelectrochemical surface stabilities of n-type GaN dependent on the electrolytes were investigated. The flatband potential in HCl obtained from Mott-Schottky plot shifted 0.1 V to positive direction compared with that in H2SO4. The variation of saturated photocurrent of 1 to 3 cycles in H2SO4 was much larger than that of HCl, NaOH and KOH. The surface morphologies also changed by the electrolytes. These results show the absorbed materials on the GaN electrode surface during the photoelectrochemical reactions were changed by the electrolyte and affected the surface reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A., Honda, K., Nature 238, 37 (1972).10.1038/238037a0CrossRefGoogle Scholar
Nozik, A. J., Memming, R., J. Phys. Chem. 100, 13061 (1996).10.1021/jp953720eCrossRefGoogle Scholar
Ono, M., Fujii, K., Ito, T., Iwaki, Y., Hirako, A., Yao, T., and Ohkawa, K., J. Chem. Phys. 126, 054708 (2007).10.1063/1.2432116CrossRefGoogle Scholar
Kocha, S. S., Peterson, M. W., Arent, D. J., Redwing, J. M., Tischler, M. A., Turner, J. A., J. Electrochem. Soc. 142, L238 (1995).10.1149/1.2048511CrossRefGoogle Scholar
Sato, K., Fujii, K., Koike, K., Goto, T., and Yao, T., Phys. Status Solidi (C) 6, S635 (2009).10.1002/pssc.200880814CrossRefGoogle Scholar
Koike, K., Sato, K., Fujii, K., Goto, T., and Yao, T., Phys. Sta-tus Solidi (C) 7, 2221 (2010).10.1002/pssc.200983450CrossRefGoogle Scholar
Fujii, K., Ohkawa, K., J. Electrochem. Soc. 153, A468 (2006).10.1149/1.2161572CrossRefGoogle Scholar
Fujii, K., Ohkawa, K., Phys.Stat.Sol. (c) 3, 2270 (2006).10.1002/pssc.200565171CrossRefGoogle Scholar
Huygens, I. M., Strubbe, K., J. Electrochem. Soc. Vol. 147, 1797 (2000).10.1149/1.1393436CrossRefGoogle Scholar
Huygens, I. M., Theuwis, A., Gomes, W. P., Strubbe, K., Phys. Chem. Chem. Phys. 4, 2301 (2002).10.1039/b110839pCrossRefGoogle Scholar