Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:09:54.447Z Has data issue: false hasContentIssue false

Surface Science Studies of NF3 Plasma and Ion Beam Interactions with Silicon

Published online by Cambridge University Press:  10 February 2011

T. W. Little
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120
S. C. Briggs
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120
F. S. Ohuchi
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120
Get access

Abstract

The interaction of nitrogen trifluoride (NF3) with silicon (Si) surfaces has been investigated by x-ray photoelectron spectroscopy (XPS). Si (100) surfaces were subjected to plasmas created by NF3 gas mixtures and ion bombardment from NF3-generated ion beams as a means of approximating the ion component of plasma processing under controlled conditions. NF 3 plasma processing has lead to the appearance of an interesting high binding energy component in F 1s XPS spectra. Investigation into the mechanism responsible for the high binding energy component suggests that the unusual component is directly influenced by diluent gas ions in the gas mixtures. It is postulated that the high binding energy component is the result of neutral fluorine incorporated in the Si lattice as a result of an ion damage mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Langan, J. G., Beck, S. E., Felker, B. S., Rynders, S. W., J. Appl. Phys., 79 (8), 38863894 (1996).Google Scholar
2. Burns, G. P., Appl. Phys. Lett. 53 (15), 14231425 (1988).Google Scholar
3. Donnelly, V. M., Flamm, D. L., Dautremont-Smith, W. C., and Werder, D. J., J. Appl. Phys. 55 (1), 242252 (1984).Google Scholar
4. lanno, N. J., Greenberg, K. E., Verdeyen, J. T., J. Electrochem. Soc. 128 (10), 21742179 (1981).Google Scholar
5. Greenberg, K. E., Hebner, G. A., and Verdeyen, J. T., Appl. Phys. Lett. 44 (3), 299300 (1984).Google Scholar
6. Greenberg, K. E. and Verdeyen, J. T., J. Appl. Phys. 57 (5), 15961601 (1985).Google Scholar
7. Hargis, P. J. and Greenberg, K. E., J. Appl. Phys. 67 (6), 27672773 (1990).Google Scholar
8. Konuma, M. and Bauser, E., J. Appl. Phys. 74 (1), 6267 (1993).Google Scholar
9. Konuma, M. and Bauser, E., J. Appl. Phys. 74 (3), 15751578 (1993).Google Scholar
10. Bower, D. H., J. Electrochem. Soc. 129 (4), 795799 (1982).Google Scholar
11. Barkanic, J. A., Reynolds, D. M., Jacodine, R. J., Stenger, H. G., Parks, J., Vedage, H., Solid State Technol., April 109-115 (1989).Google Scholar
12. Delfino, M., Chung, B.-C., Tsai, W., Salimian, S., Favreau, D. P., Merchant, S. M., J. Appl. Phys. 72 (8) 3718–3725 (1992).Google Scholar
13. Little, T. W. and Ohuchi, F. S. in Materials Modification and Synthesis by Ion Beam Processing, edited by D.E., Alexander, N.W., Cheung, B., Park, and W., Skorupa(Mater. Res. Soc. Proc. 438, Pittsburgh, PA 1997), p. 161166.Google Scholar
14. Chapman, B. N., Glow Discharge Processes: Sputtering and Plasma Etching (John Wiley and Sons, New York 1980).Google Scholar
15. Handbook of X-Ray Photoelectron Spectroscopy, edited by G., Muilenberg (Perkin Elmer Corporation, Eden Prairie, MN 1978), p. 44.Google Scholar
16. Ch. 3, “Spectral Interpretation” in Practical Surface Analysis, 2nd. Ed., Vol.1-Auger and X-Ray Photoelectron Spectroscopy, edited by D., Briggs and M.P., Seah (John Wiley and Sons, Chichester 1990).Google Scholar
17. Period Table of the Elements, VCH Publishers, Deerfield Beach, FL 1986.Google Scholar
18. Winters, H. F. and Coburn, J. W., Surf. Sci. Rep. 14, 161269 (1992).Google Scholar