Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-20T02:11:39.359Z Has data issue: false hasContentIssue false

Surface Reactions Leading to Contamination of Metal Films Photochemically Deposited from the Hexacarbonyls

Published online by Cambridge University Press:  25 February 2011

K. A. Singmaster
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120
F. A. Houle
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120
R. J. Wilson
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120
Get access

Abstract

A systematic study of the origin of contaminants in metal films photochemically deposited from the group VI hexacarbonyls is described. Background gas present in the cell during deposition, exposure to air and incomplctc removal of CO groups from the surface of the growing film all affect C and O incorporation. The data are compared to results of recent experiments examining surface photoproducts of the metal carbonyls.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solanki, R., Boyer, P. K. and Collins, G. J., Appl. Phys. Lctt. 41, 1048 (1982).CrossRefGoogle Scholar
2. Flynn, D. K., Steinfeld, J. I. and Sethi, D. S., J. Appl. Phys. 59, 3914 (1986).CrossRefGoogle Scholar
3. Gluck, N. S., Wolga, G. J., Bartosch, C. E., Ilo, W. and Ying, Z., J. Appl. Phys. 61, 998 (1987).CrossRefGoogle Scholar
4. Jackson, R. L. and Tyndall, G. W., J. Appl. Phys. 64, 2092 (1988).CrossRefGoogle Scholar
5. Gilgen, H. H., Cacouris, T., Shaw, P. S., Krchnavek, R. R. and Osgood, R. M., Appl. Phys. B42, 55 (1987).CrossRefGoogle Scholar
6. A part of this study has been reported by Singmaster, K. A., Hloule, F. A. and Wilson, R. J., Appl. Phys. Lett. 53, 1048 (1988).CrossRefGoogle Scholar
7. Lin, T. T. and Lichtman, D., J. Vac. Sci. Technol. 15, 1689 (1978).CrossRefGoogle Scholar
8. Osgood, R. M., Jr. and Ehrlich, D. J., Opt. Lett. 7, 385 (1982).CrossRefGoogle Scholar
9. Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E. and Weber, R. E., “Handbook of Auger Electron Spectroscopy”, Perkin Elmer Corporation, Eden Prairie MN (1978).Google Scholar
10. Lesiak, B., Mrozek, P., Jablonski, A. and Iozwik, A., Surf Interflace Anal. 8, 121 (1986).CrossRefGoogle Scholar
11. Creighton, J. R., J. Appl. Phys. 59, 410 (1986); N. S. Gluck, Z. Ying, C. E. Bartosch and W. Ho, J. Chem. Phys. 86, 4957 (1987); C. C. Cho and S. L. Bernasek, J. Vac. Sci. Technol. A5, 1088 (1987); T. A. Germer and W. Ilo,. J. Chem. Phys. 89, 562 (1988).CrossRefGoogle Scholar
12. Ko, E. I. and Madix, R. J., Surf. Sci. 109, 221 (1981).CrossRefGoogle Scholar
13. Shinn, N. D. and Madey, T. E., J. Vac. Sci. Technol. A3, 1673 (1985).CrossRefGoogle Scholar