Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T23:25:26.754Z Has data issue: false hasContentIssue false

Surface Processes in Laser-Induced Etching of Silicon Studied by X-Ray Photoelectron Spectroscopy

Published online by Cambridge University Press:  28 February 2011

Masataka Hirose
Affiliation:
Research Center for Integrated Systems, Hiroshima University Higashihiroshima 724, Japan
Tsuyoshi Ogura
Affiliation:
Research Center for Integrated Systems, Hiroshima University Higashihiroshima 724, Japan
Get access

Abstract

A silicon surface exposed to NF3 gas was irradiated with an ArF excimer laser beam. The reaction products on the surface and their chemical bonding features were studied by in-situ x-ray photoelectron spectroscopy at each step of the photochemical etching. It was found that SiFX (1≤X≤4) units and molecular fluorine exist in the reacting surface region. The surface Si-Si bonds attacked with fluorine are progressively fluorinated and the final surface products are mainly SiF4 and SiF3. A possible mechanism of fluorine etching is discussed on the basis of a valence electron transfer (VET) model.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Sekine, M., Okano, H., Yamabe, K., Hayasaka, N. and Horiike, Y., Proc. of the 1985 Symp. on VLSI Technology, Digest of Technical Papers (1985) p. 82.Google Scholar
2) Yokoyama, S., Inoue, T., Yamakage, Y. and Hirose, M., Proc. of the international Symp. on GaAs and Related Compounds, (Karuizawa, 1985) p. 325.Google Scholar
3) Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 38, 82 (1981).Google Scholar
4) Okano, H., Horiike, Y. and Sekine, M., Jpn. J. Appl. Phys. 24, 68 (1985).Google Scholar
5) Chuang, T. J.: Surface Science Reports 3 (1983) p. 1.Google Scholar
6) Horiike, Y., Sekine, M., Horioka, K., Arikado, T. and Okano, H., Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials (Kobe, 1984) p. 441.Google Scholar
7) Mogab, C. J. and Levinstein, H. J., J. Vac. Sci. and Technol. 17, 721 (1980).Google Scholar
8) Horiike, Y., Okano, H., Sekine, M., Horioka, K. and Hayasaka, N., Handotai Kenkyuu 23 (1985) p. 149 (in Japanese).Google Scholar
9) Houle, F. A., J. Chem. Phys. 79, 4237 (1983).Google Scholar
10) Chuang, T. J., J. Appl. Phys. 51, 2614 (1980).Google Scholar
11) McFeely, F. R., Proc. of the 7th Symp. on Dry Processes (1985) p. 92.Google Scholar
12) Hirose, M., Yokoyama, S. and Yamakage, Y., J. Vac. Sci. Technol. B 3, 1445 (1985).CrossRefGoogle Scholar
13) Phillips, J. C., Bonds and Bands in Semiconductor (Academic Press, N. Y., 1973).Google Scholar
14) Vasile, M. J. and Stevie, F. A., J. Appl. Phys. 53,3799 (1982).Google Scholar
15) Mastumi, Y., Tokuda, S., Hayashi, T., Miyamura, M., Yoshikawa, H., and Komiya, S., J. Appl. Phys. 60, (1986) 4102.Google Scholar
16) Ninomiya, K., Suzuki, K. and Nishimatsu, S., Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials (Kobe, 1984) p. 463.Google Scholar
17) Morita, M., Kubo, T., Ishihara, T. and Hirose, M., Appl. Phys. Lett. 45, 1312 (1984).Google Scholar