Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T07:29:21.018Z Has data issue: false hasContentIssue false

Surface Photovoltage Spectroscopy for the Investigation of Perovskite Oxide Interfaces

Published online by Cambridge University Press:  26 February 2011

Elke Beyreuther
Affiliation:
elke@iapp.de, Dresden University of Technology, Institute of Applied Photophysics, George-Baehr-Strasse 1, Dresden, Saxony, D-01069, Germany
Stefan Grafström
Affiliation:
grafstro@iapp.de, Dresden University of Technology, Institute of Applied Photophysics, Germany
Christian Thiele
Affiliation:
C.Thiele@ifw-dresden.de, IFW Dresden, Institute for Metallic Materials, Germany
Kathrin Dörr
Affiliation:
K.Doerr@ifw-dresden.de, IFW Dresden, Institute for Metallic Materials, Germany
Lukas M. Eng
Affiliation:
eng@iapp.de, Dresden University of Technology, Institute of Applied Photophysics, Germany
Get access

Abstract

In the present study, we comparatively investigate the distribution of electronic interface states of three different perovskite oxide interfaces, formed by epitaxial thin films of La0.7Sr0.3MnO3 (LSMO), La0.7Ca0.3MnO3 (LCMO), and La0.7Ce0.3MnO3 (LCeMO) on SrTiO3(100) substrates, in the as-prepared state as well as after an annealing procedure. We find that annealing significantly reduces the number and density of interface trap states. Two different experimental realizations of the surface photovoltage spectroscopy (SPS) technique were employed: an approach based on X-ray photoelectron spectroscopy (XPS), as well as a capacitive method. The advantages and limitations of both methods are critically discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Coey, J. M. D., Viret, M., and von Molnár, S., Adv. Phys. 48, 167 (1997).Google Scholar
2 Haghiri-Gosnet, A.-M. and Renard, J.-P., J. Phys. D: Appl. Phys. 36, R127 (2003).Google Scholar
3 Salamon, M. B. and Jaime, M., Rev. Mod. Phys. 73, 583 (2001).Google Scholar
4 Ramirez, A. P., J. Phys.: Condens. Matter 9, 8171 (1997).Google Scholar
5 Balestra, C. L., Lagowski, J., and Gatos, H. C., Surf. Sci. 26, 317 (1971).Google Scholar
6 Gatos, H. C. and Lagowski, J., J. Vac. Sci. Technol. 10, 130 (1973).Google Scholar
7 Lagowski, J., Surf. Sci. 299/300, 92 (1994).Google Scholar
8 Kronik, L. and Shapira, Y., Surf. Sci. Rep. 37, 1 (1999).Google Scholar
9 Lagowski, J., Edelman, P., Dexter, M., and Henley, W., Semicond. Sci. Technol. 7, A182 (1992).Google Scholar
10 Teich, S., Grafström, S., and Eng, L. M., Surf. Sci. 552, 77 (2004).Google Scholar
11 Dedyk, A. I., Loos, G. D., Pavlovskaya, M. V., and Ter-Martirosyan, L. T., Phys. Solid State 35, 1564 (1993).Google Scholar
12 Demkov, A. A., Fonseca, L. R. C., Tomfohr, J., and Sankey, O. F., Mat. Res. Soc. Symp. Proc. 786, E5.6.1 (2004).Google Scholar
13 Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22, 1433 (1969).Google Scholar
14 Raychaudhuri, P., Mitra, C., Mann, P. D. A., and Wirth, S., J. Appl. Phys. 93, 8328 (2003).Google Scholar
15 Sun, J. R., Lai, C. H., and Wong, H. K., Appl. Phys. Lett. 85, 37 (2004).Google Scholar
16 Schlüter, M., Phys. Rev. B 17, 5044 (1978).Google Scholar
17 Rauer, R., Bäckström, J., Budelmann, D., Kurfiss, M., Schilling, M., Rübhausen, M., Walter, T., Dörr, K., and Cooper, S. L., Appl. Phys. Lett. 81, 3777 (2002) (LCMO); R. Rauer, unpublished data (LSMO, LCeMO).Google Scholar
18 Mavroides, J. G. and Kolesar, D.F., J. Vac. Sci. Technol. 15, 538 (1978).Google Scholar
19 Yacoby, Y. and Naveh, O., Phys. Rev. B 7, 3991 (1973).Google Scholar
20 Hecht, M. H., Phys. Rev. B 41, 7918 (1990).Google Scholar
21 Fefer, E., Shapira, Y., and Balberg, I., Appl. Phys. Lett. 67, 371 (1995).Google Scholar
22 Beyreuther, E., Grafström, S., Eng, L. M., Thiele, C., and Dörr, K., Phys. Rev. B, submitted (2005).Google Scholar
23 Henrich, V. E., Dresselhaus, G., and Zeiger, H. J., Phys. Rev. B 17, 4908 (1978).Google Scholar
24 Wolfram, T., Kraut, E. A., and Martin, F. J., Phys. Rev. B 7, 1677 (1973).Google Scholar
25 Loppacher, C., Zerweck, U., Teich, S., Beyreuther, E., Otto, T., Grafström, S., and Eng, L. M., Nanotechnology 16, S1 (2005).Google Scholar
26 Grafström, S., J. Appl. Phys. 91, 1717 (2002).Google Scholar
27 Becker, T., Streng, C., Luo, Y., Moshnyaga, V., Damaschke, B., Shannon, N., and Samwer, K., Phys. Rev. Lett. 89, 237203 (2002).Google Scholar