Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-08-01T15:52:40.391Z Has data issue: false hasContentIssue false

Surface Modification of Cu(In,Ga)Se2 Thin Films During Aqueous Oxidation Etch

Published online by Cambridge University Press:  10 February 2011

B. Canava
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (associé au CNRS)
J. F. Guillemoles
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (associé au CNRS)
D. Lincot
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (associé au CNRS)
J. Vedel
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (associé au CNRS)
H. Ardelean
Affiliation:
Laboratoire de Physico-Chimie des Surfaces (associé au CNRS)Ecole Nationale Supérieure de Chimie de Paris11 rue P&M Curie, 75005 Paris, France. guillemo@ext.jussieu.fr
F. Malengreau
Affiliation:
Laboratoire de Physico-Chimie des Surfaces (associé au CNRS)Ecole Nationale Supérieure de Chimie de Paris11 rue P&M Curie, 75005 Paris, France. guillemo@ext.jussieu.fr
Get access

Abstract

The control of the barrier height at the Cu(In,Ga)Se2(CIGS)/CdS interface, via the chemical state of the CIGS surface, is a key to improve solar cell performances. In this paper chemical modifications have been achieved by the electrochemical method, by varying both the pH of the solution and the applied potential. It is shown that the potential for electrochemical oxidation depends on the pH, in good agreement with the thermodynamic predictions. The resulting surface composition of CIGS, analyzed by XPS, also depends on the pH. Contact Potential Differences (CPD) and Surface Photovoltage (SPV) measurements show that the electronic properties of the CIGS surface are modified. The important result is that the oxidation leads to the formation of permanent positive surface charges, which increase the band bending up to 0.20 V in a direction favorable for the solar cell performances.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hedström, J., Ohisen, H., Bodegård, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M. and Schock, H-W. 23rd IEEE Photovoltaics Specialists Conf., Louisville, 1993 Google Scholar
[2] Contreras, M. A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K. and al. 1st WEPEC, 24th IEEE Photovoltaic Specialist Conference, Hawai, 1994 Google Scholar
[3] Cahen, D., Ireland, P.J., Kazmerski, L. L. and Thiel, F. A. J. Appl. Phys. 57 (1985) 47614771 Google Scholar
[4] Dagan, V., Tenne, R., Endo, S., Cahen, D., Proc. 7th ICTMC, September 1986, Snowmass,USA.Google Scholar
[5] Siripala, W., Vedel, J., Lincot, D. and Cahen, D., Appl. Phys. Lett. 62 (1993) 519 Google Scholar
[6] Pecharmant, S., Guillemoles, J.F., Vedel, J., and Lincot, D., Proc. 11 th ICTMC, September 1997, Salford, UK.Google Scholar
[7] Bruening, M. and al., J. Phys. Chem., 99 (1995) 8368 Google Scholar
[8] Noufi, R., Matson, J., Powell, R.C. and Herrington, C., Solar Cells, 16 (1986) 479 Google Scholar
[9] Bard, A J Parsons, R and Jordan, E “Standard Potentials in Aqueous Solutions” Marcel, Dekker Ed New York (1985)Google Scholar
[10] D., Cahen, R., Noufi, Solar Cells, 30 (1991) 5359 Google Scholar
[11] Frese, K.W. Jr., Madou, M. J. and Morrison, S. R., J. Phys. Chem., 84, 3172(1980), J. Electrochem. Soc., 128 (1981) 1527.Google Scholar