Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T00:24:29.374Z Has data issue: false hasContentIssue false

Surface Modification of Cubic Gan Buffer Layer Grown by Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  17 March 2011

Akira Nagayama
Affiliation:
Dept. of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan Saitama Laboratory, Japan Radio Co., Ltd., 2-1-4 Fukuoka, Kamifukuoka, Saitama, 356-0011, Japan
Ryuji Katayama
Affiliation:
Dept. of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
Jun Wu
Affiliation:
Dept. of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
Kentaro Onabe
Affiliation:
Dept. of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
Hidetaka Sawada
Affiliation:
Dept. of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
Eliko Takuma
Affiliation:
Saitama Laboratory, Japan Radio Co., Ltd., 2-1-4 Fukuoka, Kamifukuoka, Saitama, 356-0011, Japan
Hideki Ichinose
Affiliation:
Saitama Laboratory, Japan Radio Co., Ltd., 2-1-4 Fukuoka, Kamifukuoka, Saitama, 356-0011, Japan
Yasuhiro Shiraki
Affiliation:
RCAST, University of Tokyo, 4-6-1 Komaba, Meguroku, 153-8904, Japan
Get access

Abstract

Anisotropic X-Ray diffraction (XRD) and transport properties of cubic GaN grown on GaAs substrates correspond to the features of low-temperature grown GaN (LT-GaN) buffer layer. When the LT-GaN layer is grown on the surface tilted from (001) to [1-10] with annealing in arsenic ambient, the macroscopic step edges along [1-10] direction are modified by either the ambient of thermal annealing, or substrate misorientation. A parallel conduction in GaN, GaAs, and GaN/GaAs hetero-interface was observed by photoconductivity measurements. Transmission electron microscope (TEM) observation shows that self-annihilations for (-111) B stacking faults are preferentially occurred near GaAs interface when GaN film grown on the surface tilted from (001) toward [1-10] (As step edge) is annealed in arsenic ambient. TEM observation also shows that stacking faults and dislocations are preferentially generated near GaN/GaAs interface. It is suggested that anisotropic transport properties correspond to the well-like potential generated by band bending at GaN/GaAs interface. The nearly isotropic mobility of 3,000 cm2/Vsec at 77K is obtained by improving interface property.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoc, H. et al., J. Appl. Phys. 76, 1363 (1994)Google Scholar
2. Trew, R. J., Shin, M. W., and Gatto, V., Solid State Electron. 41,1561 (1997)Google Scholar
3. Chiu, S. C., et al., IEEE Trans. Electron. Devices, vol.47, pp.662666, (2000)Google Scholar
4. Nagayama, A., Katayama, R., Nakadan, N., Miwa, K., Yaguchi, H., Wu, J., Onabe, K., and Shiraki, Y., phys. Stat. Sol. (a) 176, 513 (1999)Google Scholar
5. Katayama, R., Nagayama, A., Mori, S., Wu, J., Onabe, K., and Shiraki, Y., Proc. of ICMOVPE-X 2000, 278 (2000)Google Scholar
6. Katayama, R., Nagayama, A., Mori, S., Wu, J., Onabe, K., and Shiraki, Y., Extended abstract of 61th Fall Meeting, 4aY-28, Jpn. Soc. Appl. Phys. (2000)Google Scholar
7. Wu, J., Yaguchi, H., Onabe, K., and Shiraki, Y., Appl. Phys. Lett. 73, 193 (1998)Google Scholar
8. Wu, J., Yaguchi, H., Onabe, K., and Shiraki, Y., Appl. Phys. Lett. 73, 1931 (1998)Google Scholar
9. Zxhao, D. G., et al., Appl. Phys. Lett. 75, 3823 (1999)Google Scholar
10. Trampert, A., Brandt, O., Yang, H., and Ploog, K. H., Appl. Phys. Lett. 70, 583 (1997)Google Scholar
11. Brandt, O. et al., Material Research Society Series, edited by Dupuis, R. D. vol. 395, 27 (1996)Google Scholar
12. Wright, A. F. and Furhmuller, J., Appl. Phys. Lett. 73, 2751 (1998)Google Scholar
13. Elsner, J., et al., Phy. Rev. B 58, 12571 (1998)Google Scholar