Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-02T13:54:50.041Z Has data issue: false hasContentIssue false

Surface Interaction Between Wf6 and GaAs Under UV Laser Illumination

Published online by Cambridge University Press:  22 February 2011

M. Tabbal
Affiliation:
Departement de Genie Physique et Groupes des Couches Minces, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada, H3C 3A7.
R. Izquierdo
Affiliation:
Departement de Genie Physique et Groupes des Couches Minces, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada, H3C 3A7.
M. Meunier
Affiliation:
Departement de Genie Physique et Groupes des Couches Minces, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada, H3C 3A7.
A. Yelon
Affiliation:
Departement de Genie Physique et Groupes des Couches Minces, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada, H3C 3A7.
Get access

Abstract

We have studied laser-CVD of W on GaAs by X-ray Photoelectron Spectroscopy (XPS). Deposition of W is obtained by irradiating GaAs samples with a KrF excimer laser at normal incidence to the substrate, in a cell containing WF6 mixed with H2 and Ar. We have previously shown that WF6 and GaAs react at room temperature even without laser illumination. GaF3 formation and a loss of As were detected at the surface of the samples by XPS. At laser fluences of 50mJ/cm2, this reaction appears to be enhanced by laser heating of the substrate, but no metallic W is formed. At laser fluences of 67 mJ/cm2, metallic W begins to be deposited, through a pyrolytic dissociation reaction with the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Meunier, M., Izquierdo, R., Desjardins, P., Tabbal, M., Lecours, A. and Yelon, A., Thin Solid Films, 218, 137 (1992).Google Scholar
2 Katz, A., Feingold, A., Nakahara, S., Pearton, S.J. and Lane, E., Appl. Phys. Lett., 61, 525 (1992).Google Scholar
3 Kim, Y.T., Lee, C.W., Han, C.W., Hong, J.S. and Min, S.-K., Appl. Phys. Lett., 61, 1205 (1992).Google Scholar
4 Krans, R.L., Ph.D. Thesis, Utrecht State University, Utrecht (1991).Google Scholar
5 Yu, K.M., Cheung, S.K., Sands, T., Jaklevic, J.M., Cheung, N.M. and Haller, E.E., J. Appl. Phys., 61, 3235 (1986).Google Scholar
6 Takatani, S., Matsuoka, N., Shigeta, J., Hashimoto, N. and Nakashima, H., J. Appl. Phys., 61, 220 (1987).Google Scholar
7 Tabbal, M., Lecours, A., Izquierdo, R., Meunier, M. and Yelon, A., MRS Symp. Proa, 236, 117 (1992).Google Scholar
8 AInot, P., Olivier, J., Wyczisk, F. and Joubard, R. J. Electrochem. Soc, 136, 2361 (1989).Google Scholar
9 Rothschild, M. in Laser Microfabrication: Thin Film Processes and Lithography. edited by Ehrlich, D.J. and Tsao, J.Y. (Academic Press, Boston, 1989), p. 190.Google Scholar
10 Hildenbrand, D.L., J. Chem. Phys., 51, 3074 (1975).Google Scholar