Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-02T22:28:52.306Z Has data issue: false hasContentIssue false

Surface Energy Constraints for Heteroepitaxial Growth on Compliant Substrates: Morphology of GaN Grown on Sc Layers

Published online by Cambridge University Press:  10 February 2011

D. D. Koleske
Affiliation:
Naval Research Laboratory, Electronic Science and Technology Division, Washington, D.C. 20375
A. E. Wickenden
Affiliation:
Naval Research Laboratory, Electronic Science and Technology Division, Washington, D.C. 20375
J. A. Freitas Jr
Affiliation:
Naval Research Laboratory, Electronic Science and Technology Division, Washington, D.C. 20375
R. Kaplan
Affiliation:
Sachs/Freeman Assoc. Inc., 1401 McCormick Dr., Landover, MD 20785
S. M. Prokes
Affiliation:
Naval Research Laboratory, Electronic Science and Technology Division, Washington, D.C. 20375
Get access

Abstract

An empirical relationship linking surface energy to bulk modulus is presented which suggests that the thermodynamic growth mode for heteroepitaxy on compliant substrates should be 3-D. As an example of this behavior, GaN growth on Sc is shown for various growth conditions. 2-D growth is obtained when the GaN is grown on top of a low temperature GaN nucleation layer. Our results indicate that surface and interface energies, in addition to, lattice matching and thermal matching play an important role in determining the heteroexpitaxial growth morphology of GaN. There appears to be no net reduction in the dislocation density for GaN films grown on the Sc layers, because the GaN film has to be grown on a low temperature nucleation layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For group III-nitride review articles see, Davis, R.F., Proc. IEEE 79, 702 (1991); S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992); S.N. Mohammad, A.A. Salvador, and H. Morkoc, Proc. IEEE 83, 1306 (1995).Google Scholar
2. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
3. Teng, D. and Lo, Y.H., Appl. Phys. Lett. 62, 43 (1993).Google Scholar
4. Chua, C.L., Hsu, W.Y., Lin, C.H., Christenson, G., and Lo, Y.H., Appl. Phys. Lett. 64, 3640 (1994).Google Scholar
5. Yang, Z., Guarin, F., Tao, I.W., Wang, W.I., Iyer, S.S., J. Vac. Sci. Technol. B 13, 789 (1995).Google Scholar
6. Schowalter, L.J., MRS Bulletin 21, 45 (1996).Google Scholar
7. Kaplan, R., Prokes, S.M., Binari, S.C., and Kelner, G., Appl. Phys. Lett. 68, 3248 (1996)Google Scholar
8. Green, A.K., Dancy, J., and Bauer, E., J. Vac. Sci. and Technol. 7, 159 (1970).Google Scholar
9. Bauer, E., Kristallogr, Z.. 110, 372 (1958); Z. Kristallogr. 110, 395 (1958).Google Scholar
10. George, T., Jacobshon, E., Pike, W.T., Chang-Chien, P., Khan, M.A., Yang, J.W., and Mahajan, S., Appl. Phys. Lett. 68, 337 (1996).Google Scholar
11. George, T., Pike, W.T., Khan, M.A., Kuznia, J.N., and Chang-Chien, P., J. Electron. Mat. 24 241 (1995).Google Scholar
12. Maree, P.M.J., Nakagawa, K., Mulders, F.M., van der Veen, J.F., Kavanagh, K.L., Surf. Sci. 191, 305 (1987).Google Scholar
13. Trampert, A., Ernst, F., Flynn, C.P., Fischmeister, H.F., and Rühle, M., Acta Metall. Mater. 40, S227, (1992).Google Scholar
14. van der Merwe, J.H., “Recent Developments in the Theory of Epitaxy”, in the Chemistry and Physics of Solid Surface V, ed. Vanselow, R. and Howe, R., (Springer-Verlag, Berlin, 1984), p. 365.Google Scholar
15. Zangwill, A., Physics at Surfaces (Cambridge, New York, 1988).Google Scholar
16. Bechmann, R. and Hearmon, R.F.S., Group-III: Crystal and Solid State Physics, edited by Hellwege, K.-H. and Hellwege, A.M., Landolt-Börnstein, , New Series, Group III, vol. 1, (Springer-Verlag, Berlin, 1966).Google Scholar
17. Bechmann, R., Hearmon, R.F.S., and Kurtz, S.K., Group-1Il: Crystal and Solid State Physics, edited by Hellwege, K.-H. and Hellwege, A.M., Landolt-Börnstein, , New Series, Group III, vol. 2, (Springer-Verlag, Berlin, 1969).Google Scholar
18. Wawra, H., Metallkde, Z. 66, 395 (1975), ibid. p. 492.Google Scholar
19. Manassidis, I. and Gillan, M.J., J. Am. Ceram. Soc. 77, 335 (1994).Google Scholar
20. Northrup, J.E. and Neugebauer, J., Phys. Rev. B, 53, R10477 (1996).Google Scholar
21. Leisure, R.G., Schwarz, R.B., Migliori, A., and Lei, M., Phys. Rev. B 48, 1276 (1993).Google Scholar
22. Perlin, P., Jauberthie-Carillon, C., Itie, J.P., San Miguel, A., Grzegory, I., and Polian, A., Phys. Rev. B 45, 83 (1992).Google Scholar
23. Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., Takemura, K., Phys. Rev. B 49, 14 (1994).Google Scholar
24. Israelachvili, J.N., Intermolecular and Surface Forces, 2nd ed. (Academic, New York, 1992).Google Scholar
25. Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Doverspike, K., Simons, D.S., and Chi, P.H., Mat. Res. Soc. Symp. Proc. Vol. 395, 679 (1996).Google Scholar
26. Wickenden, A.E., Rowland, L.B., Doverspike, K., Gaskill, D.K., Freitas, J.A. Jr., Simons, D.S., and Chi, P.H.., J. Electron. Mat. 24, 1547 (1995).Google Scholar
27. Wickenden, A.E., Wickenden, D.K., and Kistenmacher, T.J., J. Appl. Phys. 75, 5367 (1994).Google Scholar
28. Keller, S., Kapolnek, D., Keller, B.P., Wu, Y., Heying, B., Speck, J.S., Mishra, U.K., DenBaars, S.P., Jap. J. Appl. Phys. Part 2, 35, L285 (1996).Google Scholar
29. Wu, X.H., Kapolnek, D., Tarsa, E.J., Heying, B., Keller, S., Keller, B.P., Mishra, U.K., DenBaars, S.P., Speck, J.S., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar