Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:46:16.813Z Has data issue: false hasContentIssue false

Surface Energies of Planar Defects and Dislocation Processes in Al3Ti and Tial

Published online by Cambridge University Press:  26 February 2011

G. Hug
Affiliation:
Lem Onera-CNRS, BP 72, 92322 Châtillon Cedex, France.
J. Douin
Affiliation:
Lem Onera-CNRS, BP 72, 92322 Châtillon Cedex, France.
P. Veyssiere
Affiliation:
Lem Onera-CNRS, BP 72, 92322 Châtillon Cedex, France.
Get access

Abstract

Information on APB energy in ordered alloys is important not only to understand their mechanical properties but also to analyse conditions for phase transformation. APB surface energies are determined from dissociation distances of superdislocations both in TiAl and Al3Ti Medium and high APB energy anisotropies are found in TiAl and Al3Ti respectively. These results are consistent with phase diagram studies which predict that the APB energy vanishes in the (001) plane near the Al3Ti composition. Examples of decompositions of perfect dislocations into perfect dislocations are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Flinn, P. A., Trans. Met. Soc. A.I.M.E., 218 (1960) 145.Google Scholar
[2]. Kear, B. H. and Wilsdorf, H. G. F., Trans. T.M.S.-A.I.M.E., 224 (1962) 382.Google Scholar
[3]. Douin, J., Beauchamp, P., and Veyssiere, P., Phil. Mag. A, 54 (1986) 375.Google Scholar
[4]. Korner, A., Phil. Mag., A, 58 (1988) 507.Google Scholar
[5]. Beauchamp, P., Douin, J. and Veyssière, P., Phil. Mag. A, 55 (1987) 565.Google Scholar
[6]. Lasalmonie, A., Chenal, B., Hug, G. and Beauchamp, P., Phil. Mag. A, 51 (1988) 543.CrossRefGoogle Scholar
[7]. Paidar, V., Pope, D. V., and Vitek, V., Acta Met., 32, 3 (1984) 435.Google Scholar
[8]. Loiseau, A. Google Scholar
[9]. Kumar, K. S. and Pickeus, J. R., in Proc. “Dispersion Strengthened Aluminium Alloys”, TMS Meeting (1988) Phœnix, Arizona.Google Scholar
[10]. Kawabata, T., Kanai, T. and Izumli, O., Acta Met., 33 (1985) 1355.Google Scholar
[11]. Hug, G., Loiseau, A. and Veyssière, P., Phil. Mag. A, 57 (1988) 499.Google Scholar
[12]. Kanamori, J. and Kakehashi, Y., J. Physique, 38, C7 (1977) 274.Google Scholar
[13]. Marcinkowski, M. J., Brown, N. and Fisher, R. M., Acta Met., 9 (1961) 129.Google Scholar
[14]. Vanderschaeve, G., PhD thesis, University of Lille (France), 1981.Google Scholar
[15]. Hug, G., 1988, PhD thesis, University of Orsay (France), 1988.Google Scholar
[16]. Yoo, M. H., Scripta Met., 20 (1986) 915.CrossRefGoogle Scholar
[17]. Yamaguchi, M. and Shirai, Y., in Proc. “Dispersion Strengthened Aluminium Alloys”, TMS Meeting (1988) Phœnix, Arizona.Google Scholar
[18]. Greenberg, B. A., Phys. Stat. Sol., 42 (1970) 459; Phys. Stat. Sol. (b), 54 (1973) 59.Google Scholar
[19]. Hug, G., Loiseau, A. and Lasalmonie, A., Phil. Mag. A, 54, (1986) 47.Google Scholar