Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T11:26:30.163Z Has data issue: false hasContentIssue false

The Surface Chemistry of GaAs Atomic Layer Epitaxy

Published online by Cambridge University Press:  16 February 2011

J. Randall Creighton
Affiliation:
Sandia National Labs, Division 1126, Albuquerque, NM 87185-5800
Barbara A. Banse
Affiliation:
Sandia National Labs, Division 1126, Albuquerque, NM 87185-5800
Get access

Abstract

In this paper we review three proposed mechanisms for GaAs ALE and review or present data in support or contradiction of these mechanisms. Surface chemistry results clearly demonstrate that TMGa irreversibly chemisorbs on the Ga-rich GaAs(100) surface. The reactive sticking coefficient (RSC) of TMGa on the adsorbate-free Ga-rich GaAs(100) surface was measured to be ∼0.5, conclusively demonstrating that the “selective adsorption” mechanism of ALE is not valid. We describe kinetic evidence for methyl radical desorption in support of the “adsorbate inhibition” mechanism. The methyl radical desorption rates determined by temperature programmed desorption (TPD) demonstrate that desorption is at least a factor of ∼10 faster from the As-rich c(2 × 8)/(2 × 4) surface than from the Garich surface. It is this disparity in CHs desorption rates between the As-rich and Ga-rich surfaces that is largely responsible for GaAs ALE behavior. A gallium alkyl radical (e.g. MMGa) is also observed during TPD and molecular beam experiments, in partial support of the “flux balance” mechanism. Stoichiometry issues of ALE are also discussed. We have discovered that arsine exposures typical of atmospheric pressure and reduced pressure ALE lead to As coverages ≥ 1 ML, which provides the likely solution to the stoichiometry question regarding the arsine cycle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodman, C.H.L. and Pessa, M.V., J. Appl. Phys. 60, R65 (1986).Google Scholar
2. (a) Nishizawa, J., Kurabayashi, T., Abe, H. and Nozoe, A., Surface Sci. 185, 249 (1987). (b) J. Nishizawa, T. Kurabayashi, H. Abe and N. Sakurai,.J. Electrochem. Soc. 134, 945 (1987).Google Scholar
3. DenBaars, S.P., Dapkus, P.D., Beyler, C.A., Hariz, A. and Dzurko, K.M., J. Cryst. Growth 23,195 (1988).Google Scholar
4. Tischler, M.A. and Bedair, S.M., Appl. Phys. Lett. 48, 1681 (1986).Google Scholar
5. Ozeki, M., Mochizuki, K., Ohtsuka, N. and Kodama, K., Appl. Phys. Lett. 53, 1509 (1988).Google Scholar
6. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy, (Academic Press, San Diego, 1989), pp. 363367.Google Scholar
7. Kodama, K., Ozeki, M., Mochizuki, K. and Ohtsuka, N., Appl. Phys. Lett. 54, 656 (1989).Google Scholar
8. Yu, M.L., Memmert, U. and Kuech, T.F., Appl. Phys. Lett. 55, 1011 (1989).CrossRefGoogle Scholar
9. Creighton, J.R., Lykke, K.R., Shamamian, V.A., Kay, B.D., Appl. Phys. Lett. 57, 279 (1990).Google Scholar
10. Creighton, J.R., Surface Sci. 234, 287 (1990).Google Scholar
11. lshii, H., Ohno, H., Matsuzaki, K. and Hasegawa, H., J. Crystal Growth 95, 132 (1989).Google Scholar
12. Dapkus, P.D., DenBaars, S.P., Chen, Q., Jeong, W.G. and Maa, B.Y., Prog. Crystal. Growth and Charact. 12, 137 (1989).Google Scholar
13. Dapkus, P.D., Maa, B.Y., Chen, Q., Jeong, W.G. and DenBaars, S.P., J. Crystal Growth 107, 73 (1991).Google Scholar
14. Yu, M.L., Memmert, U., Buchan, N.I. and Kuech, T.F., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F.,Dubois, L.H. and Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA 1991) pp. 3746.Google Scholar
15. Yu, M.L., Buchan, N.I., Souda, R. and Kuech, T.F., presented at the 1991 MRS Spring Meeting, Anaheim, CA, 1991 (unpublished).Google Scholar
16. Donnelly, V.M., McCaulley, J.A. and Shul, R.J., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H. and Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA 1991) pp. 1523.Google Scholar
17. Chadi, D.J., J. Vac. Sci. Technol. A5, 834 (1997).Google Scholar
18. Larsen, P.K. and Chadi, D.J., Phys. Rev. B 37, 8282 (1988).Google Scholar
19. Drathen, P., Ranke, W. and Jacobi, K., Surface Sci. 77, L162 (1978).Google Scholar
20. Massies, J., Etienne, P., Dezaly, F. and Linh, N.T., Surface Sci. 99, 121 (1980).Google Scholar
21. Frankel, D.J., Yu, C., Harbison, J.P. and Farrell, H.H., J. Vac. Sci. Technol. B5, 1113 (1987).Google Scholar
22. Pashley, M.D., Haberern, K.W., Friday, W., Woodall, J.M. and Kirchner, P.D., Phys. Rev. Lett. 60, 2176 (1988).Google Scholar
23. Beigelsen, D.K., Bringans, R.D., Northrup, J.E. and Swartz, L.-E., Phys. Rev. B 41, 5701 (1990).Google Scholar
24. Redhead, P.A., Vacuum 12. 203 (1962).Google Scholar
25. Banse, B.A. and Creighton, J.R., to be published. We have found that previous CHs coverage determinations (ref. 10) were too large by a factor of ∼3.Google Scholar
26. Foxon, C.T., Harvey, J.A. and Joyce, B.A., J. Phys. Chem. Solids 34, 1693 (1973).Google Scholar
27. King, D.A. and Wells, M.G., Surface Sci. 29, 454 (1972).CrossRefGoogle Scholar
28. Aspnes, D.E., Colas, E., Studna, A.A., Bhat, R., Koza, M.A. and Keramidas, V.G., Phys. Rev. Lett. 61, 2782, (1988).Google Scholar
29. Banse, B.A. and Creighton, J.R., to be published.Google Scholar
30. Aspnes, D.E., presented at the 1991 MRS Spring Meeting, Anaheim, CA, 1991 (unpublished).Google Scholar
31. Larsen, P.K., Neave, J.H., Veen, J.F. van der, Dobson, P.J., Joyce, B.A., Phys. Rev. B 27, 4966 (1983).Google Scholar
32. Sauvage-Simkin, M., Pinchaux, R., Massies, J., Calverie, P., Jedrecy, N., Bonnet, J. and Robinson, I.K., Phys. Rev. Lett. 62, 563 (1989).Google Scholar