Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-30T18:52:36.921Z Has data issue: false hasContentIssue false

Suitability of Bioapatite as Backfill Material for Nuclear Waste Isolation

Published online by Cambridge University Press:  25 January 2013

A.J. Finlay
Affiliation:
Earth and Environmental Science, Temple University, Philadelphia, PA 19122USA
A.E. Drewicz
Affiliation:
Earth and Environmental Science, Temple University, Philadelphia, PA 19122USA
D.O. Terry Jr.
Affiliation:
Earth and Environmental Science, Temple University, Philadelphia, PA 19122USA
D.E. Grandstaff
Affiliation:
Earth and Environmental Science, Temple University, Philadelphia, PA 19122USA
Richard D. Ash
Affiliation:
Department of Geology, University of Maryland, College Park, MD 20742USA
Get access

Abstract

Bioapatite, found in vertebrate bones and teeth, is highly reactive and may incorporate high concentrations of some radionuclides, including U, Pu, and Sr. Therefore, bioapatite may be useful in backfill or overpack materials in nuclear waste repositories. The dissolution rate for bioapatite is constant at pH > 4 and is about 5 times faster than fluorapatite. In terrestrial environments, bioapatite recrystallizes over periods of up to ca. 40 ka.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ewing, R.C. and Wang, L., 2002. Reviews in Mineralogy and Geochemistry, 48, 673699.CrossRefGoogle Scholar
Oelkers, E.H., and Montel, J-M., 2008. Elements, 4, 113116.CrossRefGoogle Scholar
Koeppenkastrop, D. and DeCarlo, E.H., 1992. Chemical Geology 95, 251263.CrossRefGoogle Scholar
Millard, A.R. and Hedges, R.E.M., 1996. Geochim. Cosmochim. Acta 60, 21392152.CrossRefGoogle Scholar
Bostick, W.D., Jarabek, R.J., Bostick, D.A., and Conca, J., 1999. Adv. Envtl. Res. 3, 488498.Google Scholar
Wright, J., and Conca, J., 2002. Amer. Chem. Soc. 42, 117122.Google Scholar
Raicevic, S., Wright, J.V., Veljkovic, V., Conca, J.L., 2006. Sci. Total Envt. 355, 1324.CrossRefGoogle Scholar
Wopenka, B. and Pasteris, J.D., 2005. Materials Science & Engineering C, 25, 131143.CrossRefGoogle Scholar
Berna, F., Matthews, A., and Weiner, S. 2004. Jour. Archaeological Sci., 31, 867882.CrossRefGoogle Scholar
Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J., and Byrne, R.H., 1995. Aquatic Geochemistry 1, 157173.CrossRefGoogle Scholar
Grandstaff, D.E. and Terry, D.O. Jr. Applied Geochemistry, 24, 733745.CrossRefGoogle Scholar
Zanazzi, A., Kohn, M.J., MacFadden, B.J., and Terry, D.O., 2007. Nature, 445, 639642.CrossRefGoogle Scholar
Li, Y-H, and Gregory, S., 1974. Geochim. Cosmochim. Acta 38, 703714.Google Scholar
Kerisit, S., and Liu, C., 2010. Geochim. Cosmochim. Acta, 74, 49374952.CrossRefGoogle Scholar
Guidry, M.W., and Mackenzie, F., 2003. Geochim. Cosmochim. Acta, 67, 29492963.CrossRefGoogle Scholar
Suarez, C.A., Macpherson, G.L., González, L.A., and Grandstaff, D.E., 2010. Geochim. Cosmochim. Acta 74, 29702988.CrossRefGoogle Scholar