Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T10:21:19.629Z Has data issue: false hasContentIssue false

Substrate-Surface Effect on Initial Growth Process of Microcrystalline Silicon Films

Published online by Cambridge University Press:  15 February 2011

K. Ikuta
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - National Institute for Advanced, Interdisciplinary Research (NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
J. W. Park
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - Angstrom Technology Partnership (ATP), 1–1–4, Higashi, Tsukuba, Tsukuba, Ibaraki 305, Japan
L. H. Kuo
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - Angstrom Technology Partnership (ATP), 1–1–4, Higashi, Tsukuba, Tsukuba, Ibaraki 305, Japan
T. Yasuda
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - National Institute for Advanced, Interdisciplinary Research (NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
S. Yamasaki
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - National Institute for Advanced, Interdisciplinary Research (NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
K. Tanaka
Affiliation:
Joint Research Center for Atom Technology (JRCAT) - National Institute for Advanced, Interdisciplinary Research (NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Initial growth processes of hydrogenated microcrystalline silicon (μc-Si:H) films have been investigated by scanning tunneling microscopy (STM), high-resolution transmission electron microscopy (HRTEM), and reflection high energy electron diffraction (RHEED). The μc-Si:H films were prepared by plasma enhanced chemical vapor deposition (PECVD) on H-terminated Si(111) and plasma-oxidized SiO2/Si(111) surfaces that were made atomically-flat by a careful wet processing. On H-terminated Si(111) the initial growth was epitaxial as evidenced by HRTEM and RHEED, while on SiO2/Si(111) the initial process was nucleation of amorphous Si followed by formation of randomly oriented μc-Si:H structure. STM observation revealed that, on both H-terminated and SiO2-terminated surfaces, initial growth processes proceed through the nucleation-and-coalescence mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matsuda, A., J. Non-Cryst. Solids 59&60, 767 (1983).Google Scholar
2.Boland, J. J. and Parsons, G. N., Science 256, 1304 (1992).Google Scholar
3.Koynov, S., Grebner, S., Radojkovic, P., Hartmann, E., Schwarz, R., Vasilev, L., Krankenhagen, R., Sieber, I., Henrion, W., and Schmidt, M., J. Non-Cryst. Solids 198–200, 1012 (1996).Google Scholar
4.Imajo, N., J. Non-Cryst. Solids 198–200, 935 (1996).Google Scholar
5.Scheib, M., Schröder, B., and Oechsner, H., J. Non-Cryst. Solids 198–200, 895 (1996).Google Scholar
6.Antoine, A. M. and Drevillon, B., J. Non-Cryst. Solids 97&98, 1403 (1987).Google Scholar
7.An, I., Nguyen, H. V., Nguyen, N. V., and Collins, R. W., Phys. Rev. Lett. 65, 2274 (1990).Google Scholar
8.Akasaka, T., Araki, Y., Nakata, M., and Shimizu, I., Jpn. J. Appl. Phys. 32, 2607 (1993).Google Scholar
9.Shirai, H., J. Non-Cryst. Solids 198–200, 931 (1996).Google Scholar
10.Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., J. Non-Cryst. Solids 137&138, 765 (1991).Google Scholar
11.Miyazaki, S., Shin, H., Miyoshi, Y., and Hirose, M., Jpn. J. Appl. Phys. 34, 787 (1995).Google Scholar
12.Kawasaki, M., and Suzuki, H., J. Appl. Phys. 75, 3456 (1994).Google Scholar
13.Matsuse, M., Kawasaki, M., and Koinuma, H., Proc. 1994 IEEE 1st World Conf. on Photovoltaic Energy Conversion, p. 425 (IEEE, USA, 1994).Google Scholar
14.Tanenbaum, D. M., Laracuente, A., and Gallagher, A. C., Proc. Mat. Res. Soc. Symp. 377, 143 (1995).Google Scholar
15.Deki, H., Fukuda, M., Miyazaki, S., and Hirose, M., Jpn. J. Appl. Phys. 34, L1027 (1995).Google Scholar
16.Ikuta, K., Toyoshima, Y., Yamasaki, S., Matsuda, A., and Tanaka, K., Spring Meeting of Mat. Res. Soc. (San Francisco, California, 1996).Google Scholar
17.Tokumoto, H., Morita, Y., and Miki, K., Mat. Res. Soc. Symp. Proc. 259, 409 (1992).Google Scholar
18.Yasuda, T., Ma, Y., Chen, Y. L., Lucovsky, G., and Maher, D., J. Vac. Sci. Technol. A11, 945 (1993).Google Scholar
19.Becker, R. S., Chabal, Y. J., Higashi, G. S., and Becker, A. J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
20.Weinberg, Z. A., Rubloff, G. W., and Bassous, E., Phys. Rev. B 19, 3107 (1979).Google Scholar
21.Fang, M. and Drevillon, B., J. Appl. Phys. 70, 4894 (1991).Google Scholar