Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:39:58.276Z Has data issue: false hasContentIssue false

Study of the Thermal Stability of the Schottky Contacts on GaInP Grown by LP-MOCVD

Published online by Cambridge University Press:  22 February 2011

Edward Y. Chang
Affiliation:
National Chiao Tung University, Institute of Material Science and Engineering, Hsinchu, Taiwan, Republic of China
Yeong-Lin Lai
Affiliation:
National Chiao Tung University, Institute of Electronics, Hsinchu, Taiwan, Republic of China
Kuen-Chyuan Lin
Affiliation:
National Chiao Tung University, Institute of Electronics, Hsinchu, Taiwan, Republic of China
Chun-Yen Chang
Affiliation:
National Chiao Tung University, Institute of Electronics, Hsinchu, Taiwan, Republic of China
F. Y. Juang
Affiliation:
Chung Shan Institute of Science and Technology, Lungtan, Taiwan, Republic of China
Get access

Abstract

Thermal stability of the Schottky contacts on Ga0.51In0.49P has been made. The Ga0.51In0.49P epitaxial layer was successfully grown on the GaAs substrate by LP-MOCVD to form a lattice-matched heterostructure. In this paper, materials aspects of the Ga0.51In0.49P layers were characterized and thermal stability of three different types of films, including single-layer metal (Pt, Ni, Pd, Au, Co, Mo, W, Cr, Ti, Al, Ta, and In), metal silicides (WSi2, W5Si3, PtSi, and Pt2i), and TiW nitrides (TiWNx ) as the Schottky contacts materials on Ga0.51In0.49P were studied. Due to the high bandgap nature of Ga0.51In0.49P, the Schottky contacts on Ga0.51In0.49P demonstrate good characteristics. The barrier heights range from 0.79 to 1.19 eV depending on the selection of the materials and the annealing conditions. For single-metal contacts, Pt film shows the best thermal stability, the barrier height of 1.09 eV and the ideality factor of 1.06 were obtained for the Pt Schottky diode with furnace annealing at 500 °C for 30 min. For refractory compound films, the TiWNx film shows the best thermal stability. The TiWNx Schottky contacts demonstrate excellent electrical as well as physical characteristics, even after high temperature annealing at 850°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishikawa, M., Ohba, Y., Sugawara, H., Yamamato, M., and Nakanisi, T., Appl. Phys. Lett., 48, 207 (1986).Google Scholar
2. Asahi, H., Kawamura, Y., and Nagai, H., J. Appl. Phys., 54, 6958 (1983).Google Scholar
3. Biswas, D., Debbar, N., Bhattacharya, P., Razeghi, M., Defour, M., and Omnes, F., Appl. Phys. Lett, 56, 833 (1990).Google Scholar
4. Kobayashi, T., Taira, K., Nakamura, F., and Kawai, H., J. Appl. Phys., 65, 4898 (1989).Google Scholar
5. Chan, Y. J., Pavlidis, D., Razeghi, M., Jaffe, M., and Singh, J., Inst. Phys. Conf. Sef. no. 96, 207 (1986).Google Scholar
6. Landgren, G. and Lukeka, R., Solid-State Commun., 37, 127 (1981).Google Scholar
7. Srivastawa, A. K. and Aroza, B. M., Solid State Electron, 24, 1049 (1981).Google Scholar
8. Christou, A., J. Appl. Phys., 50, 1139 (1979).Google Scholar
9. Sieger, K. and Christou, A., Solid State Electron., 21, 677 (1978).Google Scholar
10. Johnson, N. M., Magee, T. J., and Peng, J., J. Vac. Sci. Technol., 13, 838 (1976).Google Scholar
11. Ashok, S., Borrego, J. M., and Gutann, R. J., Solid State Electron., 22, 621 (1979).Google Scholar
12. Chung, C. A., Chou, N. J., J. Vac. Sci. Technol., 17, 1358 (1980).Google Scholar
13. Sinha, A. K. and Poate, J. M., in Thin Films - Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (John Wiley & Sons, New York, 1978), pp. 407432.Google Scholar
14. Madams, C. J., Morgan, D. V., and Howes, M. J., Electron. Lett., 11, 574 (1975).Google Scholar
15. Barret, C. and Vapaille, A., Solid State Electron., 21, 1209 (1978).Google Scholar
16. Kumar, V., J. Phys. Chem. Solids, 36, 535 (1975).Google Scholar
17. Ogawa, M., Thin Solid Films, 70, 181 (1980).Google Scholar
18. Oustry, A., Canmount, M., Escant, A., Martinez, A., and Toprasertpog, B., Thin Solid Films, 79, 251 (1981).Google Scholar
19. Jackson, T. N. and DeGolormo, J. F., J. Vac. Sci. Technol., B 3, 1676 (1985).Google Scholar
20. Tkatani, S., Matsuoko, N., Shigeta, J., Hashimoto, N., and Hakashima, H., J. Appl. Phys., 61, 220 (1987).Google Scholar
21. Chalegali, A., Spiers, G. D., Magerlien, J. H., and Guthrie, H. C., J. Appl. Phys., 61, 2054 (1987).Google Scholar
22. Yokomaya, Nacoi, Onishi, Toyokazu, Odani, Kohichirioh, IEEE Trans. Electr. Dev., ED-29, 1541 (1982).Google Scholar
23. Yocomaya, N., Oshini, T., Onodera, H., and Abe, M., IEEE Trans. Electr. Dev., ED-29, 1541 (1982).Google Scholar
24. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wieley, New York, 1981), pp. 279280.Google Scholar
25. Cowley, A. M. and Sze, S. M., J. Appl. Phys., 36, 3212 (1965).Google Scholar