Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T14:00:05.010Z Has data issue: false hasContentIssue false

A Study of the Effect of Growth Rate and Annealing on GaN Buffer Layers on Sapphire

Published online by Cambridge University Press:  21 February 2011

J.C. Ramer
Affiliation:
University of New Mexico, CHTM, Albuquerque, NM 87131
K. Zheng
Affiliation:
University of New Mexico, CHTM, Albuquerque, NM 87131
C.F. Kranenberg
Affiliation:
University of New Mexico, CHTM, Albuquerque, NM 87131
M. Banas
Affiliation:
University of New Mexico, CHTM, Albuquerque, NM 87131
S.D Hersee
Affiliation:
University of New Mexico, CHTM, Albuquerque, NM 87131
Get access

Abstract

Using atomic force microscopy (AFM) and X-ray diffraction (XRD) we have determined that on [0001] oriented sapphire, the GaN buffer layer shows a degree of crystallinity that is dependent on growth rate. Annealing studies show evolution of the crystallinity and the emergence of a preferred orientation. Also, substrate orientation is found to influence the buffer layer crystallinity. Based on this work and previous results, we propose that the GaN buffer layer growth can be described by the Stranski-Krastanov growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hiramatsu, K., Itoh, S., Amano, H., Akasaki, I., Kuwano, N., Shiraishi, T., Oki, K., J. Cryst. Growth, 115,628 (1991).Google Scholar
2 Nakamura, S., Jap. J. Appl. Phys., 30, L1705 (1991).Google Scholar
3 Hersee, S.D., Ramer, J., Zheng, K., Kranenberg, C.F., Malloy, K., Banas, M., and Goorsky, M., J. Electron. Mat., 24, 1519 (1995).Google Scholar
4 Harle, V., Bolay, H., Steuber, F., Kaufmann, B., Reyher, G., Dornen, A., Scholz, F., paper B2, proc. of EW-OMVPE VI, Gent (Belgium), June (1995).Google Scholar
5 Keller, S., Kapolnek, D., Keller, B.P., Heying, B., Wu, Y.-F., Kato, S., Mishra, U.K., and DenBaars, S.P., paper B7, proc. of EW-OMVPE VI, Gent (Belgium), June (1995).Google Scholar
6 Wickenden, A.E., Wickenden, D.K., and Kistenmacher, T.J., Journal of Applied Physics, 75, 5367 (1994).Google Scholar
7 Powell, R.C., Lee, N.E., Kim, Y.W. and Greene, K.E., J. Appl. Phys., 73, 189 (1993).Google Scholar
8 Chadda, S., Pelcynski, M., Malloy, K. and Hersee, S.D., MRS proc., 326, 353, (1994)Google Scholar
9 Ponce, F.A., Krusor, B.S., Major, J.S. Jr., Piano, W.E. and Welch, D.F., Appl. Phys. Lett. ,67, 410 (1995).Google Scholar
10 Qian, W., Skowronski, M., and De Graef, M., Doverspike, K., Rowland, L.B., and Gaskill, D. K., Appl. Phys. Lett., 66, 1252 (1995).Google Scholar
11 Vook, R.W., Thin Solid Films, 64, 91 (1979).Google Scholar
12 Tu, K-N, Mayer, J.W., Feldman, L.C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists, (Macmillan Publishing Company, 1992), chap. 7Google Scholar
13 Ohring, M., The Materials Science of Thin Films, (Academic Press, Inc., 1992), chapter 5.Google Scholar