Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T01:27:57.755Z Has data issue: false hasContentIssue false

Study of Percolation in PMMA / Indium Tin Oxide Composites

Published online by Cambridge University Press:  15 March 2011

Charles J. Capozzi
Affiliation:
SURF student from Rutgers University, School of Engineering Piscataway, NJ 08854-8065, U.S.A.
Sandra Shackelford
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering Atlanta, GA 30332-0245, U.S.A.
Runqing Ou
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering Atlanta, GA 30332-0245, U.S.A.
Rosario A. Gerhardt
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering Atlanta, GA 30332-0245, U.S.A.
Get access

Abstract

Knowledge of percolation in binary composites is critical to the development of new materials with specific electrical and optical properties. This report investigates the detection of percolation in novel two-phase composites consisting of poly(methyl) methacrylate(PMMA) and indium tin oxide (ITO). ITO is a filler of particular interest primarily for possessing optical clarity consistent with PMMA in the visible light range. AC impedance measurements were performed on specimens with varying concentrations of ITO particles to determine the percolation threshold. Percolation was observed when specimens contained 2-3% vol. of nano- sized ITO and 6%-8% vol. of coarse-sized ITO. Thus, the percolation threshold appeared significantly decreased with reduced particle size of the filler. It is speculated that minor agglomerates in the bulk of the specimens may have prevented percolation from occurring at even lower volume fractions of the filler phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Runyan, J., Gerhardt, R.A. and Ruh, R., J. Am. Ceram. Soc. 84(7), 14901496 (2001).Google Scholar
2. Kovacik, J., Scripta Materilia, 39(2), 153157 (1998).Google Scholar
3. Efos, A. L. and Shklovskii, B. I., Physica Status Solidi B, 76, 475485 (1976).Google Scholar
4. McLachlan, D. S., Rosenbaum, R., Albers, A., Eytan, G., Grammatica, N., Hurvis, G., Pickup, J. and Zaken, E., J. Phys. Condens. Matter. 5, 48294842 (1993).Google Scholar
5. Balberg, I. and Binenbaum, N., Phys.Rev.B 33,20172019(1986).Google Scholar
6. Maybury, D.C. and Gerhardt, R.A., Ceramic Transactions 150, 6370(2003).Google Scholar
7. Schueler, R., Petermann, J., Schulte, K., Wentzel, H.P., J. Appl. Pol. Sci. 63, 17411746 (1997).Google Scholar
8. Davenport, D., Conductive Polymers. New York: Seymour Ed; 1981, p. 3947.Google Scholar
9. Costa, L.C., Henry, F., Valente, M.A., Mendiratta, S. K., Sombra, A. S., European Polymer Journal, 38, 14951499 (2002).Google Scholar
10. Ezquerra, T. A., Connor, M. T., Roy, S., Kulescza, M., Fernandes-Nascimento, J., Balta-Calleja, F. J., Composites Science and Technology, 61, 903909 (2001).Google Scholar
11. Roldudghin, V. I., Progress in Organic Coatings, 39, 81100 (2000).Google Scholar
12. Carmona, F., Ravier, J., Carbon, 40, 151156 (2002).Google Scholar
13. El-Tantawy, F., Kamada, K., Ohnabe, H., Materials Letters, 57, 242251 (2002).Google Scholar
14. Balberg, I., Carbon, 40, 139143 (2002).Google Scholar
15. Hosono, H., Ohta, H., Orita, M., Ueda, K., Hirano, M., Vacuum, 66(3-4), 419425 (2002).Google Scholar
16. Granqvist, C. G., Hultaker, A., Thin Solid Films, 411(1), 15 (2002).Google Scholar
17. Li, Z., Samuels, R.J., Cappozzi, C.J. and Gerhardt, R.A., to be published.Google Scholar
18. Gerhardt, R.A., Runyan, J., Sana, C., McLachlan, D.S. and Ruh, R., J.Am.Ceram.Soc. 84[10], 23352342(2001).Google Scholar