Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-20T22:46:40.723Z Has data issue: false hasContentIssue false

Study of Oxidation Properties of Amorphous Si:B Films

Published online by Cambridge University Press:  21 February 2011

G.-R. Yang
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
T. C. Nason
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
Y.-J. Wu
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
B. Y. Tong
Affiliation:
Center of Chemical Physics, University of Western Ontario, London, Ontario, N6A 5B7, Canada
S. K. Wong
Affiliation:
Center of Chemical Physics, University of Western Ontario, London, Ontario, N6A 5B7, Canada
Get access

Abstract

Thin films of an amorphous silicon-boron alloy with boron content 1–50 at.% have been deposited by low pressure chemical vapor deposition (LPCVD). The boron content and film thickness of the samples were controlled by regulating the ratio of diborane and silane gases during the deposition. It was observed that the crystallization of the amorphous alloy took place at higher temperatures as boron concentration was increased. After a thermal oxidation was performed, the stoichiometry of die resulting oxide layers on various samples was determined by the secondary ion mass spectrometry and Auger depth profile methods. While the threshold temperature for thermal oxidation was determined to be inversely proportional to the boron concentration, the oxidation rate showed a dramatic increase with boron content. In particular, an alloy containing 30% boron was readily oxidized at 500°C. Mechanisms for the enhancement of oxidation consistent with stoichiometric and spectroscopic properties of the oxide layers are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsumura, M. and Hayama, H., Proc. of the IEEE 68, 1349 (1980).Google Scholar
2. Saraswat, K. C. and Singh, H., J. Electrochem. Soc. 129, 2321 (1982).Google Scholar
3. Kinsbron, E., Murarka, S. P., Sheng, T. T., and Lynch, W. T., J. Electrochem. Soc. 130, 1555 (1983).CrossRefGoogle Scholar
4. Murase, K., Ogino, T., and Mizushima, Y., Jpn. J. Appl. Phys. 22, 1771 (1983).Google Scholar
5. Sternheim, M., Kinsbron, E., Alspector, J., and Heinmann, P. A., J. Electrochem. Soc. 130, 1735 (1983).Google Scholar
6. Yamamoto, Y., Sawada, T., Arimoto, S., Hasegawa, H., and Ohno, H., Electron. Lett. 42, 607 (1983).Google Scholar
7. Batey, J. and Tiemey, E., J. Appl. Phys. 60, 3136 (1986), and references therein.Google Scholar
8. Giridihar, R. V. and Rose, K., J. Electrochem. Soc. 135, 2803 (1988), and references therein.CrossRefGoogle Scholar
9. Zhang, H., Kanoh, H., Yamaji, S., Sugiura, O., and Matsumura, M., Jpn. J. Appl. Phys. 29, 58 (1990), and references therein.Google Scholar
10. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
11. Murase, K., Takeda, A., and Mizushima, Y., Jap. J. Appl. Phys. 21, 561 (1982).Google Scholar
12. Murase, K., Amemiya, Y., and Mizushima, Y., Jap. J. Appl. Phys. 21, 1559 (1982).Google Scholar
13. Chik, K. P., Du, N., John, P. K., Ou, E., Rastogi, A. C., Tam, K. H., Tong, B. Y., Wong, S. K., Wu, X. W., and Yao, J., J. Non-Cryst. Solids 77&78, 961 (1985).CrossRefGoogle Scholar
14. Tong, B. Y., Wong, S. K., Yao, J., Lau, W. M., Du, N., and John, P. K., Mat. Res. Soc. Symp. Proc. 95, 191 (1987).Google Scholar
15. Lau, W. M., Yang, R., Tong, B. Y., and Wong, S. K., Mat. Res. Soc. Symp. Proc. 105, 163 (1987).CrossRefGoogle Scholar
16. Yang, G., Bai, P., Tong, B. Y., and Hill, I., Solid State Commun. 72, 159 (1989).Google Scholar
17. Yang, G., Bai, P., Wu, Y.-J., Tong, B. Y., Wong, S. K., Du, J., and Hill, I., Mat. Res. Soc. Symp. Proc. 164, 321 (1990).Google Scholar
18. Irene, E. A. and van der Meulen, Y J., J. Electrochem. Soc. 123, 1380 (1976).Google Scholar
19. Ohsaki, H., Miura, K., and Tatsumi, Y., J. Non-Cryst. Solids 93, 395 (1987).Google Scholar
20. Fritzche, H., Tsai, C. C. and Persans, P., Solid State Technol. 21, 55 (1978).Google Scholar
21. Elliot, R. P., “Constitutions of Binary Alloys, First Supplement,” copyright 1965 by McGraw-Hill Pubs., NY; and references therein.Google Scholar
22. Pantelides, S. T., “The Nature of Defects and Defect Dynamics in Amorphous Silicon,” in “Amorphous Silicon and Related Materials, Vol. A,” Fritzsche, H., ed., copyright 1989 by World Scientific Pub. Co., Teaneck, NJ, p. 541 Google Scholar
23. Villegas, M. A. and Fernandez Navarro, J. M., J. Mater. Sci. 23, 2464 (1988).Google Scholar
24. Biscoe, J., Robinson, C. S. Jr, and Warren, B. E., J. Am. Cer. Soc. 22, 180 (1939).Google Scholar
25. Revesz, A. G. and Evans, R. J., J. Phys. Chem. Solids 30, 551 (1969).CrossRefGoogle Scholar
26. Ghandhi, S. K., “VLSI Fabrication Principles,” copyright 1983 by John Wiley and Sons, New York, p. 172–4.Google Scholar
27. Volf, M. B., “The Chemical Approach to Glass,” copyright 1984 by Elsevier Science Publishing Co., Inc., New York, p. 197–8.Google Scholar