Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:59:05.293Z Has data issue: false hasContentIssue false

Study of High Nitrogen Compositions GaNAs and GaInNAs Material Quality by X-ray Diffraction and Photoluminescence

Published online by Cambridge University Press:  21 March 2011

T. K. Ng
Affiliation:
School of Electrical and Electronic Engineering (Block S1) Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email address: tienkhee@pmail.ntu.edu.sg
S. F. Yoon
Affiliation:
School of Electrical and Electronic Engineering (Block S1) Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email address: tienkhee@pmail.ntu.edu.sg
S. Z. Wang
Affiliation:
School of Electrical and Electronic Engineering (Block S1) Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email address: tienkhee@pmail.ntu.edu.sg
W. K. Loke
Affiliation:
School of Electrical and Electronic Engineering (Block S1) Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email address: tienkhee@pmail.ntu.edu.sg
W. J. Fan
Affiliation:
School of Electrical and Electronic Engineering (Block S1) Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email address: tienkhee@pmail.ntu.edu.sg
Get access

Abstract

GaNAs and GaInNAs growths are subjects of considerable interest due to its technological importance in long wavelength lasers emitting within the optical-fiber communication wavelength window (1.31 – 1.55 m m). We study GaNAs and GaInNAs materials growth on (100) semi-insulating GaAs substrate with high nitrogen compositions (>2%) using a solid source molecular beam epitaxy (SSMBE) system in conjunction with a RF plasma source. GaNAs layer with high nitrogen compositions of 4.85% and 6% with good XRD peak intensities were successfully grown. GaInNAs quantum wells (QWs) were then grown with reference to the nitrogen compositions measured in the GaNAs materials to obtain nitrogen compositions > 2%. The photoluminescence (PL) peak positions of the GaInNAs QWs blueshifted after annealing at 840°C and 10min. It was found that the blueshift of PL peaks are highly dependent on nitrogen compositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., Okai, M., Uomi, K., IEEE J. of Selected Topics in Quantum Electronics 3(3) (1997) 719.Google Scholar
2. Buyanova, I. A., Chen, W. M., Monemar, B., MRS Internet J. Nitride Semicond. Res. 6, 2 (2001) p. 119.Google Scholar
3. Riechert, H., Egorov, A. Yu., Borchert, B., Illek, S., Compound Semiconductor 6(5) July (2000) p. 71.Google Scholar
4. Pan, Z., Li, L. H., Zhang, W., Lin, Y. W., Wu, R. H., Ge, W., Appl. Phys. Lett., 77(9) (2000) 1280.Google Scholar
5. Yang, X., Heroux, J. B., Jurkovic, M. J., Wang, W. I., J. Vac. Sci. Technol. B, 17(3) (1999) 1144.Google Scholar
6. Kageyama, T., Miyamoto, T., Makino, S., Koyama, F., Iga, K., Jpn. J. Appl. Phys. 38 (1999) L298.Google Scholar
7. Mair, R. A., Lin, J. Y., Jiang, H. X., Jones, E. D., Allerman, A. A., Kurtz, S. R., Appl. Phys. Lett., 76 (2) (2000) 188.Google Scholar
8. Saito, H., Makimoto, T., Kobayashi, N., J. Crystal Growth, 195 (1998) 416.Google Scholar
9. Largeau, L., Bondoux, C., Patriarche, G., Asplund, C., Fujioka, A., Salomonsson, F., Hammar, M., Appl. Phys. Lett. 79(12) (2001) 1795.Google Scholar
10. Xin, H. P., Tu, C. W., Geva, M., Appl. Phys. Lett. 75(10) 1999.Google Scholar
11. Potter, R., Mazzucato, S., Balkan, B., Adams, M. J., Chalker, P. R., Joyce, T. B., Bullough, T. J., Superlattices and Microstructures, 29(2) (2001) 169.Google Scholar
12. Tanaka, S., Moto, A., Tanabe, T., Ikoma, N., Takagishi, S., Ext. Abstr. (45th Spring Meet. 1998), Japan Society of Applied Physics and Related Societies, p. 290.Google Scholar
13. Saito, H., Makimoto, T., Kobayashi, N., Ext. Abstr. (45th Spring Meet. 1998), Japan Society of Applied Physics and Related Societies, p. 291.Google Scholar
14. Pan, Z., Miyamoto, T., Schlenker, D., Koyama, F., Iga, K., Conf. InP and Rel. Mat.s 1998 (IPRM'98), TuP-16.Google Scholar
15. Miyamoto, T., Takeuchi, K., Kageyama, T., Koyama, F., Iga, K., Jpn. J. Appl. Phys., 37 (1998) 90.Google Scholar
16. Takeuchi, K., Miyamoto, T., Kageyama, T., Koyama, F., Iga, K., Jpn. J. Appl. Phys., 37 (1998) 1603.Google Scholar
17. Miyamoto, T., Takeuchi, K., Kageyama, T., Koyama, F., Iga, K., J. Cryst. Growth, 197 (1999) 67.Google Scholar
18. Wang, S. Z., (unpublished), 2001.Google Scholar
19. Pan, Z., Li, L. H., Zhang, W., Lin, Y. W., Wu, R. H., Appl. Phys. Lett. 77(2) (2000) 214.Google Scholar
20. Ryu, S. W., Kim, I., Choe, B. D., Jeong, W. G., Appl. Phys. Lett. 67 (1995) 1417.Google Scholar