Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-11T07:41:56.804Z Has data issue: false hasContentIssue false

A Study of Co and Mn in ZnO Varistors

Published online by Cambridge University Press:  28 February 2011

G. E. Pike
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. G. Dosch
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

ZnO varistors are polycrystalline materials which have highly non—linear current/voltage characteristics controlled by depletion regions around the grain boundaries. Dissolved transition metals at concentrations of about 1 at.% are required to achieve this large nonlinearity, but their role is unclear. To address this issue we have usedthe technique of photothermal deflection spectroscopy to measure the optical absorption of varistors containing Co or Mn, both common dopants. Prominent peaks and edges appear in the spectra, and are associated with substitutional Co2+and Mn2+ ions whose ground states are deep within the ZnO bandgap. Electro— and photoluminescence spectra show Stokes shifted peaks for some of these transitions. The spectral dependence of the photoconductivity shows that some of the absorption features correspond to ionization of the impurities. This result is used to show how the dark impact ionization of these impurities due to a high applied voltage can contribute to the current/voltage nonlinearity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pike, G. E., Mat. Res. Soc. Proo.,5,369 (1982).Google Scholar
2. Mahan, G. D., Levinson, L. M., and Philipp, H. R., J. Appl. Phys.,50,2799 (1979).Google Scholar
3. Clarke, D. R., J. Appl. Phys.,50,6829 (1979).CrossRefGoogle Scholar
4. Kingery, W. D., Sande, J. B. Vander, and Mitamura, T., J. Am. Ceramic Soc.,62,221 (1979).Google Scholar
5. Greuter, F. and Gisler, E., to be published.Google Scholar
6. Dorain, P. B., Phys. Rev.,112,1058 (1958).Google Scholar
7. Hausmann, A., Phys. Stat. Sol.,31,K131 (1969).CrossRefGoogle Scholar
8. Pike, G. E., Kurtz, S. R., Gourley, P. L., Philipp, H. R., and Levinson, L. M., J. Appl. Phys.,57 (1985), accepted for pub.CrossRefGoogle Scholar
9. Dosch, R. G., “Proc. 2nd Int. Conf. on Ultrastructure Processing of Ceramics, Glasses, and Composites,” Feb.25-Mar.1, 1985, Palm Coast, Fla., ed. Hench, L. L. and Ulrich, D. R., to be published.Google Scholar
10. Seager, C. H. and Land, C. E., Appl. Phys. Lett.,45,395 (1984).CrossRefGoogle Scholar
11. Pappalardo, R., Wood, D. L., and Linares, R. C., J. Chem. Phys,35,2041 (1961).CrossRefGoogle Scholar
12. Kleinlein, F. W. and Helbig, R., Z. Physik,266,201 (1974).Google Scholar
13. Philipp, H. R. and Levinson, L. M., J. Appl. Phys.,46,3206 (1975).CrossRefGoogle Scholar
14. Pike, G. E. and Gourley, P. L., unpublished data.Google Scholar
15. Langer, D. W. and Richter, H. J., Phys. Rev.,146,554 (1966).CrossRefGoogle Scholar
16. Kushida, T., Tanaka, Y., and Oka, Y., J. Phys. Soc. Japan,37,1341 (1974).Google Scholar
17. Rossinelli, M., Blatter, G. and Greuter, F., J. Brit. Ceramic Soc., Proc. Series (1985), in press.Google Scholar
18. Pike, G. E. and Seager, C. H., J. Appl. Phys.,50,3414 (1979).Google Scholar
19. Greuter, F., private communication.Google Scholar