Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T12:15:30.592Z Has data issue: false hasContentIssue false

Study of bare and functionalized Zirconia Nanoparticles Filled Polymer Electrolytes Based on a Polyurethane

Published online by Cambridge University Press:  11 February 2011

Paulo V. S. da Conceição
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, C.P. 941, 30123–970, Belo, Horizonte, MG, Brazil.
Luiz O. Faria
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, C.P. 941, 30123–970, Belo, Horizonte, MG, Brazil.
Adelina P. Santos
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, C.P. 941, 30123–970, Belo, Horizonte, MG, Brazil.
Clascídia A. Furtado
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, C.P. 941, 30123–970, Belo, Horizonte, MG, Brazil.
Get access

Abstract

In this work, composite polymer electrolytes based on a thermoplastic polyurethane/LiClO4 amorphous system and on bare and functionalized zirconia nanoparticles as a filler are reported. The ceramic nanoparticles were synthesized via the sol-gel route using zirconium butoxide as the precursor for zirconium oxide nanoclusters and methacrylic acid as an organic modifier group. The salt concentration in the polymer phase was 17 wt% and fillers were added in the range between 2 and 10wt%. Scanning electron microscopy (SEM) was used to characterize the average size and the homogeneity of the nanoparticles in the polymer matrix, while impedance spectroscopy (IS) was used to evaluate the ionic conductivity of the composites. The addition of zirconia fillers results in an increase in ionic conductivity for all filled systems. The results also show that the functionalization of the zirconia nanoparticles promotes a significant increase in conductivity, suggesting that the interaction of the metracrylate-functionalized fillers with the polyurethane matrix was greatly improved. These results raise interest in the study of organically modified ceramic clusters as fillers for electrolyte polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skaruup, S., West, K., Julian, P. M., Thomas, D. M., Solid State Ionics 40–41, 1021 (1990).Google Scholar
2. Wieczorek, W., Lipka, P., Zukowska, G., Wycislik, H., J. Phys. Chem. 102, 6968 (1998).Google Scholar
3. Croce, F., Appetecchi, G. B., Persi, L, Scrosati, B., Nature 394, 456 (1998).Google Scholar
4. Croce, F., Curini, R., Martinelli, A., Ronci, F., Scrosati, B., J. Phys. Chem. B 103, 10632 (1999).Google Scholar
5. Marcinek, M., Bac, A., Lipka, P., Zalewska, A., Zukowska, G., Borkowska, R., Wieczorek, W., J. Phys. Chem. B 104, 11088 (2000)Google Scholar
6. Ribeiro, R., Goulart Silva, G., Mohallem, N. D. S., Electrochim. Acta 46, 1679 (2001).Google Scholar
7. Forsyth, M., MacFarlane, D. R., Best, A., Adebahr, J., Jacobsson, P., Hill, A. J., Solid State Ionics (2002).Google Scholar
8. Furtado, C.A., Silva, G.G., Machado, J.C., Pimenta, M. A., Silva, R.A., J. Phys. Chem. B 103, 7102 (1999)Google Scholar
9. Wolf, C. and Rüssel, C., J. Mater. Sci. 27 (1992), p. 3749 Google Scholar
10. Schubert, U., Chem. Mat. 13, 3487 (2001).Google Scholar
11. McLennagham, A. W., Pethrick, R. A., Eur Polym J. 24/11, 1063 (1988).Google Scholar
12. Kickelbick, G., Schubert, U., Chem. Ber. 130 473 (1997).Google Scholar
13. Przyluski, J., Siekierski, M., Wieczorek, W., Electrochim. Acta 40 2101 (1995).Google Scholar
14. Ratner, M. A., in: Maccallum, J. R., Vincent, C. A. (Eds.), Polymer Electrolyte Reviews, Vol. 1, Amsterdam, Elsevier, 1987 (chap. 7).Google Scholar