Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T18:17:15.788Z Has data issue: false hasContentIssue false

Structure of ErBa2Cu3Ox in the Composition Range 6.1 < x < 7.0

Published online by Cambridge University Press:  21 February 2011

E. Pörschke
Affiliation:
Institut für Festkõrperforschung, KFA Jülich, D-5170 Jülich, Fed. Rep., Germany
P. Meuffels
Affiliation:
Institut für Festkõrperforschung, KFA Jülich, D-5170 Jülich, Fed. Rep., Germany
B. Rupp
Affiliation:
Institut für Festkõrperforschung, KFA Jülich, D-5170 Jülich, Fed. Rep., Germany Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Get access

Abstract

The structure of a series of homogeneous ErBa2Cu3Ox powder samples (6.1 < x < 7.0) has been determined by elastic neutron scattering using the Rietveld method of profile refinement. All samples were prepared in the same way using a defined absorption-desorption method.

By removing oxygen the c axis expands, whilst the Cu2–Cu2 and the Ba–Ba distances contract. Accordingly, the most significant changes in atomic distances occur between the Cu2–O2,3 planes and the Cul–O4–Cul chains. With decreasing oxygen content the distance between the Cu–O planes and the Cu–O–Cu chains increases and the oxygen (0, 0, z) apex atom O1 moves closer to the Cu–O–Cu chains withdrawing from the Cu–O planes. The O1–plane and O1–chain distances are monotonic functions of the oxygen content, but the x dependence of these bonding lengths seems to be much stronger below x < 6.5. The change of the interatomic distances can be correlated to the suppression of superconductivity which clearly occurs within the orthorhombic phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furrer, A., Brüesch, P., and Unternährer, P., Phys. Rev. B 38, 4616 (1988)Google Scholar
2. Chattopadhyay, T., Brown, P.E., Bonnenberg, D., Ewert, S., and Maletta, H., Europhys. Lett. 6, 363 (1988)Google Scholar
3. Tarascon, J.M., McKinnon, W.R., Greene, L.H., Hull, G.W., and Vogel, E.M., Phys. Rev. B 36, 226 (1987)Google Scholar
4. Gallagher, P.K., O'Bryan, H.M., Sunshine, S.A., Murphy, D.W., Mat. Res. Bull. 22, 995 (1987)Google Scholar
5. Meuffels, P., Rupp, B., and Pörschke, E., Physica C 156, 441 (1988)CrossRefGoogle Scholar
6. Bakker, H., Westerveld, J.P.A., Cascio, D.M.R. Lo, and Welch, D.O., Physica C 157, 25 (1989)Google Scholar
7. Berera, A. and Fontaine, D. de, Phys. Rev. B 39, 6727 (1989)CrossRefGoogle Scholar
8. Kikuchi, R. and Choi, J.-S., Physica C 160, 347 (1989)Google Scholar
9. Cava, R.J., Batlogg, B., Rabe, K.M., Rietman, E.A., Gallagher, P.K., and Rupp, L.W., Physica C 156, 523 (1988)Google Scholar
10. Pörschke, E. and Meuffels, P. in High Tc, Superconductors, Part A edited by Bongers, P.F., Schlenker, C., and Stritzker, B. (J. Less-Common Met. 150, E-MRS Fall Conference, Strasbourg 1988) pp. 153158 Google Scholar
11. Rietveld, H.M., J. Appl. Cryst. 2, 65 (1969)Google Scholar
12. Hewat, A.W., Atomic Energy Research Establishment Report No. AERE-R7350, 1973 (unpublished)Google Scholar
13. Rupp, B., MS-DOS microcomputer version, 1988 (unpublished)Google Scholar
14. Beech, F., Miraglia, S., Santoro, A., and Roth, R.S., Phys. Rev. B 35, 8778 (1987)Google Scholar
15. Prince, E., Acta Crystallogr., Sect. B 38, 1099 (1982)Google Scholar
16. Young, R.A., Prince, E., and Sparks, R.A., J. Appl. Cryst. 16, 357 (1982)CrossRefGoogle Scholar
17. Hewat, A.W., Capponi, J.J., Chaillout, C., Marezio, M., and Hewat, E.A., Solid State Commun. 64, 301 (1987)CrossRefGoogle Scholar
18. Jorgensen, J.D., Veal, B.W., Kwok, W.K., Crabtree, G.W., Umezawa, A., Nowicki, L.J., and Paulikas, A.P., Phys. Rev. B 36, 5731 (1987); J.D. Jorgensen, M.A. Beno, D.G. Hinks, L. Soderholm, K.J. Volin, R.L. Hitterman, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang, and M.S. Kleefisch, ibid., 3608 (1987)Google Scholar
19. Maletta, H. (private communication)Google Scholar
20. Miceli, P.F., Tarascon, J.M., Greene, L.H., Barboux, P., Rotella, F.J., and Jorgensen, J.D., Phys. Rev. B 37(10), 5932 (1988)Google Scholar
21. Whangbo, M.-H., Evain, M., Beno, M.A., Geiser, U., and Williams, J.M., lnorg. Chem. 27, 467 (1988)Google Scholar
22. Chakraverty, B.K., Avignon, M., and Feinberg, D. in High Tc Superconductors, Part A edited by Bongers, P.F., Schlenker, C., and Stritzker, B. (J. Less-Common Met. 150, E-MRS Fall Conference, Strasbourg 1988) pp. 1131 Google Scholar
23. Ashkenazi, J. and Kuper, C.G., in Studies of High Temperature Superconductors, edited by Narliker, A.V. (NOVA Science, New York, 1989) p. 1 Google Scholar
24. Kaldis, E., Fischer, P., Hewat, A.W., Hewat, E.A., Karpinski, J., and Rusiecki, S., Physica C 159, 668 (1989)CrossRefGoogle Scholar