Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T17:54:40.167Z Has data issue: false hasContentIssue false

Structure and Stability of Grain Boundaries in Molybdenum with Segregated Carbon Impurities

Published online by Cambridge University Press:  15 February 2011

R. Janisch
Affiliation:
Max-Planck-lnstitut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
T. Ochs
Affiliation:
Max-Planck-lnstitut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
A. Merkle
Affiliation:
Max-Planck-lnstitut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
C. Elsässer
Affiliation:
Max-Planck-lnstitut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
Get access

Abstract

The segregation of interstitial impurities to symmetrical tilt grain boundaries (STGB) in bodycentered cubic transition metals is studied by means of ab-initio electronic-structure calculations based on the local density functional theory (LDFT). Segregation energies as well as changes in atomic and electronic structures at the ΣE5 (310) [001] STGB in Mo caused by segregated interstitial C atoms are investigated. The results are compared to LDFT data obtained previously for the pure Σ5 (310) [001] STGB in Mo. Energetic stabilities and structural parameters calculated ab initio for several crystalline Molybdenum Carbide phases with cubic, tetragonal or hexagonal symmetries and different compositions, MoCx, are reported and compared to recent high-resolution transmission electron microscopy (HRTEM) observations of MoCx, intergranular films and precipitates formed by C segregation to a Σ5 (310) [001] STGB in a Mo bicrystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995), ch. 7.Google Scholar
[2] Lejçek, P. and Hofmann, S., Critical Reviews in Solid State and Materials Sciences 20, 1 (1995).Google Scholar
[3] Hashimoto, M., Ishida, Y., Yamamoto, R. and Doyama, M., Acta metall. 32, 1 (1984).Google Scholar
[4] Pénisson, J. M., Bacia, M. and Biscondi, M., Philos. Mag. A 73, 859 (1996).Google Scholar
[5] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
[6] Vanderbilt, D., Phys. Rev. B 32, 8412 (1985); S. G. Louie, S. Froyen and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).Google Scholar
[7] Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P. and Fähnle, M., J. Phys.: Condens. Matter 2, 4371 (1990); K. M. Ho, C. Elsässer, C. T. Chan and M. Fähnle, J. Phys.: Condens. Matter 4, 5189 (1992); B. Meyer, C. Elsässer and M. Fähnle, Fortran9O Program for Mixed-Basis Pseudopotential Calculations for Crystals (MPI für Metallforschung Stuttgart, unpublished).Google Scholar
[8] Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
[9] Kittel, C., Introduction to Solid State Physics (Wiley, New York, 1986).Google Scholar
[10] Toth, L. E., The Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
[11] Elsässer, C., Beck, O., Ochs, T. and Meyer, B., Mat. Res. Soc. Symp. Proc. Vol. 492, 121 (1998); T. Ochs, O. Beck, C. Elsässer and B. Meyer, Philos. Mag. A (in press, 1999); T. Ochs, C. Elsässer, M. Mrovec, V. Vitek, J. Belak and J. A. Moriarty, Philos. Mag. A (in press, 1999).Google Scholar
[12] Campbell, G. H., Foiles, S. M., Gumbsch, P., Rühle, M. and King, W. E., Phys. Rev. Lett. 70, 449 (1993).Google Scholar
[13] Campbell, G. H., Belak, J. and Moriarty, J. A., Acta mater. 47, 3977 (1999).Google Scholar